Discrete D-branes in $A d S_{3}$ and in the 2d black hole

Sylvain Ribault

Deutsches Elektronen-Synchrotron, Theory Division
Notkestrasse 85, Lab 2a, Hamburg 22603, Germany
E-mail: sylvain.ribault@desy.de

Abstract: I show how the $A d S_{2}$ D-branes in the Euclidean $A d S_{3}$ string theory are related to the continuous D-branes in Liouville theory. I then propose new discrete D-branes in the Euclidean $A d S_{3}$ which correspond to the discrete D-branes in Liouville theory. These new D-branes satisfy the appropriate shift equations. They give rise to two families of discrete D-branes in the 2 d black hole, which preserve different symmetries.

Keywords: Conformal Field Models in String Theory, D-branes.

Contents

1. Introduction and overview 1
2. $A d S_{2}$ D-branes from Liouville theory 3
2.1 Comparison of one-point functions 3
2.2 Comparison of conformal blocks 司
2.3 The bulk regime 6
3. More branes in the Euclidean $A d S_{3}$ 7
3.1 An ansatz for new discrete D-branes 8
3.2 Verification of the shift equation8
3.3 Checks and interpretations à la Cardy 10
3.3.1 D-branes and representation theory 10
3.3.2 Computation of the annulus amplitudes 11
4. More branes in the 2d black hole 12
4.1 Known branes and new branes in the 2d black hole 13
4.2 Geometric and non-geometric D-branes 14
4.3 A shift equation from $N=2$ Liouville theory 15

1. Introduction and overview

Liouville theory and string theories with an affine $\widehat{s \ell_{2}}$ symmetry have played an important rôle in recent studies of time-dependent string theory, two-dimensional quantum gravity, and the AdS/CFT correspondence. The features of these theories which are wellunderstood suggest that they share many important properties. This is not surprising considering that the Virasoro algebra of Liouville theory can be obtained from the $\widehat{s \ell_{2}}$ affine Lie algebra by a quantum Hamiltonian reduction [1]. This suggests that Liouville theory can be found as a subsector of theories with an $\widehat{s \ell_{2}}$ symmetry. For example, $A d S_{3}$ string theory can be reduced to Liouville theory via a topological twist [[2, 顺].

Conversely, it would be interesting to reconstruct the full $A d S_{3}$ string theory in terms of the better-understood Liouville theory. A hint that this can be done comes from Zamolodchikov and Fateev's relation (4) between the Knizhnik-Zamolodchikov (KZ) and Belavin-Polyakov-Zamolodchikov (BPZ) systems of differential equations, which reflect the $\widehat{\iota_{2}}$ and Virasoro symmetries respectively. More recently, all correlation functions of the H_{3}^{+}model (the Euclidean version of $A d S_{3}$ string theory) on a sphere have been written in terms of Liouville correlation functions [5]. Proving this relation relied on the prior knowledge of
these H_{3}^{+}correlation functions in terms of well-characterized objects, namely the threepoint structure constants and the conformal blocks. However, the H_{3}^{+}-Liouville relation would be most useful if it allowed the construction of previously unknown objects in the H_{3}^{+} model from known objects in Liouville theory. One purpose of this article is to demonstrate that it indeed does.

The new objects in the H_{3}^{+}model which I plan to construct are discrete D-branes (in both meanings of having a discrete open string spectrum and coming in a discrete family) which correspond to the Zamolodchikov-Zamolodchikov (ZZ) D-branes in Liouville theory [6]. I will first determine a relation between the known continuous $A d S_{2}$ branes in the H_{3}^{+}model [7] and the continuous Fateev-Zamolodchikov-Zamolodchikov-Teschner (FZZT) D-branes in Liouville theory [8, [9]. The main feature of this relation is the correspondence (2.8) between the parameters of these families of D-branes, which associates two different FZZT branes to one $A d S_{2}$ brane. Moreover, it is possible to relate the correlators of bulk fields in the presence of FZZT and $A d S_{2}$ branes eq. (2.10), but only in a particular regime which I will call the bulk regime. This is due to singularities in the H_{3}^{+}conformal blocks, which have a clear interpretation - but so far no resolution - in terms of Liouville theory.

The relation between FZZT and $A d S_{2}$ branes will then suggest a natural ansatz for a family of discrete branes in H_{3}^{+}parametrized by two integers (m, n), related to the ZZ branes of Liouville theory. The most useful characterization of these branes, which I will call $A d S_{2}^{d}$ branes, is the relation to the $A d S_{2}$ branes eq. (3.4). (The name $A d S_{2}^{d}$ refers to that relation and not to the geometry of the new discrete branes.) These $\operatorname{Ad} S_{2}^{d}$ branes will be shown to be solutions of the same shift equation that was checked for the $\operatorname{AdS} S_{2}$ branes 7. How to modify this equation for the case of discrete branes will be suggested by Liouville theory. I will then propose a tentative relation between $\widehat{s \ell_{2}}$ representations and D-branes in H_{3}^{+}, inspired by the Cardy relation which holds in rational conformal field theories, and which may help understand which H_{3}^{+}D-branes can be related to Liouville branes and which ones cannot.

From the new discrete D-branes in the H_{3}^{+}model, two families of compact D-branes in the 2 d "cigar" black hole $S L(2, \mathbb{R}) / U(1)$ obeying two different gluing conditions can be constructed along the lines of 10. Some of these D-branes have a geometric interpretation as D0-branes at the tip of the cigar, the others do not have any geometric interpretation. These new D-branes in the 2d black hole can then easily be translated into D-branes in the $N=2$ Liouville theory in Hosomichi's formalism [11], which provides a second independent shift equation.

2. $A d S_{2}$ D-branes from Liouville theory

The aim of this section is to generalize the relation between H_{3}^{+}and Liouville bulk correlators on the Riemann sphere [5] to correlators of bulk fields in the presence of worldsheet boundaries described by continuous D-branes: the $A d S_{2}$ branes on the H_{3}^{+}side, the FZZT branes on the Liouville side.

The relation between bulk correlators on the sphere can be decomposed into relations between bulk conformal blocks on the one hand, and bulk three-point structure constants on the other hand [12]. The introduction of a worldsheet boundary implies a modification of the conformal blocks, and the introduction of extra structure constants, namely the one-point functions (which must vanish when no boundary is there to break the worldsheet translation invariance).

Let me briefly recall that Liouville theory is a two-dimensional conformal field theory on a worldsheet parametrized by a complex number z. The theory may be defined in terms of a field $\phi(z)$ by the action:

$$
\begin{equation*}
S^{\text {Liouville }}=\int d^{2} z\left(\left|\partial_{z} \phi\right|^{2}+\mu_{L} e^{2 b \phi}\right) \tag{2.1}
\end{equation*}
$$

The H_{3}^{+}model describes strings in a three-dimensional space and therefore requires three fields $\phi, \gamma, \bar{\gamma}$:

$$
\begin{equation*}
S^{H_{3}^{+}}=k \int d^{2} z\left(\left|\partial_{z} \phi\right|^{2}+e^{2 \phi} \partial \gamma \bar{\partial} \bar{\gamma}\right) . \tag{2.2}
\end{equation*}
$$

A more complete review with relevant references can be found in [5].

2.1 Comparison of one-point functions

Consider one-point functions of the closed string worldsheet fields $V_{\alpha}(z)$ in Liouville theory and $\Phi^{j}(x \mid z)$ in the H_{3}^{+}model. From the bulk H_{3}^{+}-Liouville relation, the Liouville momentum α and the $H_{3}^{+} \operatorname{spin} j$ are related by:

$$
\begin{equation*}
\alpha=b(j+1)+\frac{1}{2 b}, \tag{2.3}
\end{equation*}
$$

where the Liouville parameter b is related to the H_{3}^{+}model level k by $b^{2}=\frac{1}{k-2}$. In terms of j, the one-point function for the Liouville FZZT brane parametrized by the real number s is $[8,9$

$$
\begin{align*}
& \left\langle V_{\alpha=b(j+1)+\frac{1}{2 b}}(z)\right\rangle_{s}=\frac{\Psi_{s}^{\mathrm{FZZT}}}{|z-\bar{z}|^{2 \Delta_{\alpha}}}, \\
& \quad \Psi_{s}^{\mathrm{FZZT}}=\left(\pi \mu_{L} \gamma\left(b^{2}\right)\right)^{-j-\frac{1}{2}} \frac{1}{\pi 2^{\frac{1}{4}} b} \Gamma(2 j+1) \Gamma\left(1+b^{2}(2 j+1)\right) \cosh 2 \pi b s(2 j+1), \tag{2.4}
\end{align*}
$$

where z is the complex worldsheet coordinate and μ_{L} the Liouville interaction strength. The one-point function for an $A d S_{2}$ brane in H_{3}^{+}with real parameter r is: [7, 13]

$$
\begin{equation*}
\Psi_{r}^{A d S_{2}}(x)=\nu_{b}^{j+\frac{1}{2}}\left(8 b^{2}\right)^{-\frac{1}{4}}|x+\bar{x}|^{2 j} \Gamma\left(1+b^{2}(2 j+1)\right) e^{-r(2 j+1) \operatorname{sgn}(x+\bar{x})}, \tag{2.5}
\end{equation*}
$$

where $\nu_{b}=\pi \frac{\Gamma\left(1-b^{2}\right)}{\Gamma\left(1+b^{2}\right)}$ so that $\Phi^{j=0}$ is the identity field (in slight contrast to [7]), and x is a complex isospin variable which labels states within a continuous $S L(2, \mathbb{C})$ representation of $\operatorname{spin} j$.

This one-point function of the x-basis fields is written here for later use, but is not clearly related to the one-point function in Liouville theory. Instead, the bulk H_{3}^{+}-Liouville relation suggests to consider the μ-basis fields

$$
\begin{equation*}
\Phi^{j}(\mu \mid z)=|\mu|^{2 j+2} \int_{\mathbb{C}} d^{2} x e^{\mu x-\bar{\mu} \bar{x}} \Phi^{j}(x \mid z) \tag{2.6}
\end{equation*}
$$

whose one-point functions are obtained from eq. (2.5) after a straightforward calculation:

$$
\begin{align*}
& \left\langle\Phi^{j}(\mu \mid z)\right\rangle_{r}=\frac{\Psi_{r}^{A d S_{2}}}{|z-\bar{z}|^{2 \Delta_{j}}}, \\
& \Psi_{r}^{A d S_{2}}=|\mu| \delta(\Re \mu) \nu_{b}^{j+\frac{1}{2}} \pi\left(8 b^{2}\right)^{-\frac{1}{4}} \Gamma(2 j+1) \Gamma\left(1+b^{2}(2 j+1)\right) \cosh (2 j+1)\left(r-i \frac{\pi}{2} \operatorname{sgn} \Im \mu\right) . \tag{2.7}
\end{align*}
$$

It is now obvious that the $A d S_{2}$ D-brane one-point function is essentially the same as that of an FZZT brane (2.4), but depending on $\operatorname{sgn} \Im \mu$ two different boundary parameters may appear:

$$
\begin{equation*}
s_{ \pm}=\frac{r}{2 \pi b} \pm \frac{i}{4 b} . \tag{2.8}
\end{equation*}
$$

Such a relation could have been expected on several grounds. First, the FZZT branes are invariant under $s \rightarrow-s$ whereas the $A d S_{2}$ branes are not invariant under $r \rightarrow-r$, so there cannot be a one-to-one relation between the parameters r and s. Second, the $S L(2, \mathbb{R})$ symmetry of the $A d S_{2}$ brane, which acts on the x parameter, does not completely determine the x dependence of the one-point function, but allows an arbitrary dependence on $\operatorname{sgn}(x+\bar{x})$ [7] . Therefore the one-point function for an $A d S_{2}$ brane involves two structure constants (instead of one in Liouville theory), which in the μ basis are encoded in the $\operatorname{sgn} \Im \mu$ dependence. Third, the difference $s_{+}-s_{-}=\frac{i}{2 b}$ is the jump in Liouville boundary condition induced by a boundary degenerate field $B_{-\frac{1}{2 b}}$. This is not surprising in view of the appearance of such degenerate fields in the H_{3}^{+}-Liouville relation beyond the one-point function discussed below.

2.2 Comparison of conformal blocks

The H_{3}^{+}bulk conformal blocks are controlled by the Knizhnik-Zamolodchikov equations [14], which are enough to determine their relation with Liouville conformal blocks [12]. Let me determine the KZ equations satisfied by the conformal blocks involved in the correlator of n bulk fields in the presence of an $A d S_{2}$ brane $\left\langle\Phi^{j_{1}}\left(\mu_{1} \mid z_{1}\right) \cdots \Phi^{j_{n}}\left(\mu_{n} \mid z_{n}\right)\right\rangle_{r}$. In Wess-Zumino-Witten models with symmetry-preserving boundary conditions, such KZ equations are identical to the KZ equations satisfied by a correlator of $2 n$ bulk fields on the sphere (at points $z_{1}, \cdots z_{n}, \bar{z}_{1} \cdots \bar{z}_{n}$), modulo a twist of the currents acting on the reflected fields if the gluing conditions are non-trivial. In the case of $A d S_{2}$ branes, the gluing conditions are trivial as I will now show.

Let me call $J^{a}(z), \bar{J}^{a}(\bar{z})$ the left- and right-moving currents of the H_{3}^{+}model 15 . Their modes generate an $\widehat{s \ell_{2}}(\mathbb{C}) \times \widehat{s \ell_{2}}(\mathbb{C})$ affine Lie algebra. Their zero modes act on the fields $\Phi^{j}(x \mid z)$ or $\Phi^{j}(\mu \mid z)$ as differential operators with respect to the isospin variables x or μ :

$$
\begin{align*}
& J_{0}^{-}=\frac{\partial}{\partial x} \quad=\mu, \\
& J_{0}^{0}=x \frac{\partial}{\partial x}-j \quad=-\mu \frac{\partial}{\partial \mu}, \tag{2.9}\\
& J_{0}^{+}=x^{2} \frac{\partial}{\partial x}-2 j x=\mu \frac{\partial^{2}}{\partial \mu^{2}}-\frac{j(j+1)}{\mu},
\end{align*}
$$

and the currents \bar{J}_{0}^{a} are defined by repacing x, μ with $\bar{x}, \bar{\mu}$. Note that this definition of the \bar{J}_{0}^{a} currents is incompatible with the change of basis (2.6) and is therefore basis-dependent. As a result, the gluing conditions will also be basis-dependent.

The μ-basis one-point function of the $A d S_{2}$ brane satisfies $\left(J_{0}^{a}+\bar{J}_{0}^{a}\right) \Psi_{r}^{A d S_{2}}(\mu)=0$, which corresponds to the trivial gluing condition $J=\bar{J}$ (see for instance 16]). Thus, it satisfies the same KZ equations as the bulk two-point function $\left\langle\Phi^{j}(\mu \mid z) \Phi^{j}(\bar{\mu} \mid \bar{z})\right\rangle$. Indeed, the μ-dependences are similar: $|\mu|^{2} \delta^{(2)}(\mu+\bar{\mu})$ for the bulk two-point function, $\mu \delta(\mu+\bar{\mu})$ for the one-point function. In contrast, the x-basis one-point function has an $|x+\bar{x}|^{2 j}$ factor which contrasts with the bulk two-point function $|x-\bar{x}|^{4 j}$. This reflects the fact that the gluing conditions are non-trivial in the x-basis.

Since the correlator $\left\langle\Phi^{j_{1}}\left(\mu_{1} \mid z_{1}\right) \cdots \Phi^{j_{n}}\left(\mu_{n} \mid z_{n}\right)\right\rangle_{r}$ satisfies the same KZ equations as a bulk correlator with $2 n$ fields, these equations are equivalent to BPZ equations via Sklyanin's separation of variables, as explained in [5, 17]. This leads to the following relation between H_{3}^{+}and Liouville correlators in the presence of worldsheet boundaries, where the equality so far means "satisfies the same differential equations as":

$$
\begin{align*}
\left\langle\prod_{\ell=1}^{n} \Phi^{j}{ }_{\ell}\left(\mu_{\ell} \mid z_{\ell}\right)\right\rangle_{r}= & \pi^{2} \sqrt{\frac{b}{2}}(-1)^{n}\left|\sum_{i=1}^{n} \Re\left(\mu_{i} z_{i}\right)\right| \delta\left(\Re\left(\sum_{i=1}^{n} \mu_{i}\right)\right) \\
& \times\left|\Theta_{2 n}\right|^{\frac{k-2}{2}}\left\langle\prod_{\ell=1}^{n} V_{\alpha_{\ell}}\left(z_{\ell}\right) \prod_{a=1}^{n-1} V_{-\frac{1}{2 b}}\left(y_{a}\right)\right\rangle_{s=\frac{r}{2 \pi b}-\frac{i}{4 b} \operatorname{sgn} \sum_{i=1}^{n} \Im \mu_{i}} \tag{2.10}
\end{align*}
$$

In this equation the following conventions are used: the momenta and spins are related as
in eq. (2.3), I assume $\mu_{L}=\frac{b^{2}}{\pi^{2}}$, the function $\Theta_{2 n}$ is defined by

$$
\begin{equation*}
\Theta_{2 n}=\frac{\prod_{\ell<\ell^{\prime} \leq n}\left|z_{\ell \ell^{\prime}}\right|^{2} \prod_{\ell, \ell^{\prime} \leq n}\left(z_{\ell}-\bar{\ell}_{\ell^{\prime}}\right) \prod_{a<a^{\prime} \leq n-1}\left|y_{a a^{\prime}}\right|^{2} \prod_{a, a^{\prime} \leq n-1}\left(y_{a}-\bar{y}_{a^{\prime}}\right)}{\prod_{\ell=1}^{n} \prod_{a=1}^{n-1}\left|z_{\ell}-y_{a}\right|^{2}\left|z_{\ell}-\bar{y}_{a}\right|^{2}}, \tag{2.11}
\end{equation*}
$$

and most importantly the y_{a} are the roots with positive imaginary parts of the real polynomial $P(t)$ defined by:

$$
\begin{equation*}
\sum_{\ell=1}^{n}\left(\frac{\mu_{\ell}}{t-z_{\ell}}+\frac{\overline{\mu_{\ell}}}{t-\bar{z}_{\ell}}\right)=\left[\sum_{\ell=1}^{n}\left(\mu_{\ell} z_{\ell}+\bar{\mu}_{\ell} \bar{z}_{\ell}\right)\right] \frac{P(t)}{\prod_{\ell=1}^{n}\left(t-z_{\ell}\right)\left(t-\bar{z}_{\ell}\right)} \tag{2.12}
\end{equation*}
$$

In the case $n=3$, the equation (2.10) can be represented as:

The reflected fields at $\left(\bar{z}_{1} \cdots \bar{z}_{n}\right)$ in the lower half-plane are not physical, but they are indicated in this picture because they appear in the KZ or BPZ equations satisfied by the physical correlators of eq. (2.10).

In this subsection I only argued that both sides of equation (2.10) satisfy identical systems of differential equations. This amounts to a relation between the conformal blocks from which the correlators are built. In the next subsection I will complete the argument for equation (2.10) and show that it holds in a certain regime.

2.3 The bulk regime

From the explicit expressions for the one-point functions (2.4), (2.7) it is easy to check that the equation (2.10) holds in the case $n=1$, which does not involve any insertion of degenerate Liouville fields $V_{-\frac{1}{2 b}}$. One could then think that it is possible to prove equation (2.10) by a recursion on n, using the bulk operator product expansion to reduce the case of the n-point function in the limit $z_{1} \rightarrow z_{2}$ to the case of the $n-1$-point function. (The bulk OPEs in the H_{3}^{+}model and Liouville theory are indeed related in a way which would suit such an argument [5].) Then one would rely on the KZ equation to extend the relation (2.10) to all values of z_{i}, away from the limit $z_{1} \rightarrow z_{2}$.

However, this argument does not work because the conformal blocks which solve the KZ equations have singularities. These singularities are most easily seen in the corresponding Liouville theory conformal blocks: they occur whenever one of the y_{a} becomes real. Indeed the y_{a} are defined as the roots of the real polynomial $P(t)$ (2.12). Such a polynomial can have real roots and pairs of complex conjugate roots. Let me call the bulk regime the range of values of μ_{ℓ}, z_{ℓ} such that all the roots of $P(t)$ are complex. The repeated use of the bulk OPE $z_{1} \rightarrow z_{2} \rightarrow \cdots z_{n}$ (as required by the recursion above) is possible only in the bulk regime, because the definition of $P(t)(2.12)$ implies that for $z_{1} \rightarrow z_{2}$ some root y_{1} of $P(t)$ will also move close to z_{1}, and therefore in the bulk. Thus, the equation (2.10) holds only
in the bulk regime. Unfortunately, this prevents the easy determination of an H_{3}^{+}-Liouville relation in other bases like the x basis, which would involve an integration over all values of μ_{ℓ}.

Let me illustrate the singularities of the conformal blocks in the case of a two-point function $\left\langle\Phi^{j_{1}}\left(\mu_{1} \mid z_{1}\right) \Phi^{j_{2}}\left(\mu_{2} \mid z_{2}\right)\right\rangle_{r}$. In this case the polynomial $P(t)$ has degree two and its roots are complex provided

$$
\begin{equation*}
z \equiv\left|\frac{z_{1}-\bar{z}_{2}}{z_{1}-z_{2}}\right|>\frac{\left|\mu_{1}\right|+\left|\mu_{2}\right|}{\left|\mu_{1}+\mu_{2}\right|} . \tag{2.14}
\end{equation*}
$$

The cross-ratio z varies from 1 when the two H_{3}^{+}bulk fields are far apart or close to the boundary, to $+\infty$ when they are close together or far from the boundary. The corresponding Liouville configurations are:

$$
\begin{equation*}
\underset{1}{\text { Boundary regime }} \quad \text { Singularity } \quad \text { Bulk regime } \xrightarrow[+\infty]{\stackrel{\left|\mu_{1}\right|+\left|\mu_{2}\right|}{\left|\mu_{1}+\mu_{2}\right|}} z=\left|\frac{z_{1}-\bar{z}_{2}}{z_{1}-z_{2}}\right| \tag{2.15}
\end{equation*}
$$

In the boundary regime, the relation between the KZ and BPZ equations still holds. However it is not clear that a relation between H_{3}^{+}and Liouville correlators can be found. Such a relation would have to specify which boundary parameters appear in Liouville theory. The boundary degenerate fields induce jumps of the boundary parameter s by the quantity $\frac{i}{2 b}$ [8]. The fact that the two boundary parameters $s_{ \pm}$(2.8) differ by this quantity is very suggestive, but more work needs to be done. This issue is however not relevant to the present article, whose purpose is to find new discrete D-branes in the H_{3}^{+}model.

3. More branes in the Euclidean $A d S_{3}$

In this section I will show that the relation between Liouville FZZT branes and $A d S_{2}$ branes in the H_{3}^{+}model suggests a natural ansatz for new discrete D-branes in the H_{3}^{+} model, which will be related to the discrete ZZ-branes in Liouville theory. This ansatz will then be subjected to a number of tests.

Let me first briefly review the ZZ branes and their relation to the continuous FZZT branes. The ZZ branes are parametrized by two strictly positive integers (m, n) and are described by the one-point functions [6]

$$
\begin{gather*}
\left\langle V_{\alpha=b(j+1)+\frac{1}{2 b}}(z)\right\rangle_{(m, n)}=\frac{\Psi_{(m, n)}^{\mathrm{ZZ}}}{|z-\bar{z}|^{2_{\alpha}}}, \\
\Psi_{(m, n)}^{\mathrm{ZZ}}=\left(\pi \mu_{L} \gamma\left(b^{2}\right)\right)^{-j-\frac{1}{2}} \frac{2^{\frac{3}{4}}}{\pi b} \Gamma(2 j+1) \Gamma\left(1+b^{2}(2 j+1)\right) \sin \pi m(2 j+1) \sin \pi n b^{2}(2 j+1) . \tag{3.1}
\end{gather*}
$$

A well-known property of these ZZ branes which will be most useful in the following is:

$$
\begin{equation*}
\Psi_{(m, n)}^{\mathrm{ZZ}}=\Psi_{\frac{i}{2}\left(m b^{-1}+n b\right)}^{\mathrm{FZZT}}-\Psi_{\frac{i}{2}\left(m b^{-1}-n b\right)}^{\mathrm{FZZT}} \tag{3.2}
\end{equation*}
$$

3.1 An ansatz for new discrete D-branes

The previous section demonstrated that an $A d S_{2}$ brane with boundary parameter r is related to FZZT branes with boundary parameters $s=\frac{r}{2 \pi b}-\frac{i}{4 b} \operatorname{sgn} \Im \mu$. It is natural to look for discrete branes in the H_{3}^{+}model which would preserve the same symmetries as the $A d S_{2}$ branes (in other words, they would obey the same gluing conditions) and which would be related in a similar manner to ZZ branes with parameters depending on sgn $\Im \mu$. In addition, I have explained that the difference of the two possible boundary parameters has an interpretation as the jump induced by a boundary degenerate field, which is quite natural considering the appearance of such fields in the boundary regime (2.15). Through the relation between ZZ and FZZT branes eq. (3.2), this jump corresponds to a jump $m \rightarrow m-1$ of the parameter m of the ZZ branes. This suggests the following relation:

$$
\begin{gather*}
\text { New discrete brane in } H_{3}^{+} \\
(m, n) \text { strictly positive integers }
\end{gather*} \quad \begin{cases}\text { Liouville ZZ branes } \\
(m-1, n) & \text { if } \operatorname{sgn} \Im \mu>0 \\
(m, n) & \text { if } \operatorname{sgn} \leftrightarrows<0\end{cases}
$$

I will call "discrete $A d S_{2}$ branes" or " $A d S_{2}^{d}$ branes" these new branes. Their above definition in terms of ZZ branes can be translated into a relation with $A d S_{2}$ branes via the ZZ-FZZT relation eq. (3.2) and the $A d S_{2}$-FZZT relation of the previous section:

$$
\begin{equation*}
\Psi_{(m, n)}^{A d S_{2}^{d}}=\Psi_{i \pi\left(m-\frac{1}{2}+n b^{2}\right)}^{A d S_{2}}-\Psi_{i \pi\left(m-\frac{1}{2}-n b^{2}\right)}^{A d S_{2}} \tag{3.4}
\end{equation*}
$$

The essential feature of this relation is the shift $-\frac{1}{2}$, which directly corresponds to the shift of the boundary parameters in the $A d S_{2}$-FZZT relation eq. (2.8). Let me write explicitly the one-point function of the $A d S_{2}^{d}$ branes in the x basis:

$$
\begin{align*}
\Psi_{(m, n)}^{A d S_{2}^{d}}(x)=\nu_{b}^{j+\frac{1}{2}}\left(8 b^{2}\right)^{-\frac{1}{4}} & |x+\bar{x}|^{2 j} \Gamma\left(1+b^{2}(2 j+1)\right) \\
& \times 2 i \operatorname{sgn}(x+\bar{x}) e^{-i \pi\left(m-\frac{1}{2}\right)(2 j+1) \operatorname{sgn}(x+\bar{x})} \sin \pi b^{2} n(2 j+1) \tag{3.5}
\end{align*}
$$

Naturally, the relation (3.4) provides a simple way to derive the one-point functions of the $A d S_{2}^{d}$ branes in any basis. I have used the x basis because the shift equation of the next subsection is formulated in this basis.

3.2 Verification of the shift equation

The one-point function for an $A d S_{2}$ brane was found in 7 by solving a shift equation indicating how it should behave under shifts $j \rightarrow j \pm \frac{1}{2}$. A modified version of the shift equation is expected to hold for discrete branes preserving the same symmetries. This expectation is based on the study of shift equations for ZZ and FZZT branes in Liouville theory [8, 6] which I now review.

The shift equations for ZZ and FZZT branes are of the type:

$$
\begin{equation*}
R_{s}^{a} \Psi_{s}^{a}(\alpha)=F_{-} \Psi_{s}^{a}\left(\alpha-\frac{b}{2}\right)+F_{+} \Psi_{s}^{a}\left(\alpha+\frac{b}{2}\right), \tag{3.6}
\end{equation*}
$$

where the index a means ZZ or FZZT, with brane parameters generically called s. The coefficients $F_{ \pm}$on the right-hand side do not depend on the type or parameter of the Dbrane because they are fusing matrix elements. However, the quantity R_{s}^{a} depends on the type of brane: ${ }^{1}$

$$
\begin{align*}
R_{s}^{\mathrm{FZZT}} & =R^{\mathrm{FZZT}}\left(-\frac{b}{2}, Q \mid s\right)=-2 \pi \sqrt{\frac{\mu_{L}}{\sin \pi b^{2}}} \frac{\Gamma\left(-1-2 b^{2}\right)}{\Gamma\left(-b^{2}\right)^{2}} \cosh 2 \pi b s, \tag{3.7}\\
R_{(m, n)}^{\mathrm{ZZ}} & =\frac{\Psi_{(m, n)}^{\mathrm{ZZ}}\left(\alpha=-\frac{b}{2}\right)}{\Psi_{(m, n)}^{\mathrm{ZZ}}(\alpha=0)}, \tag{3.8}
\end{align*}
$$

where the bulk-boundary structure constant value $R^{\mathrm{FZZT}}\left(-\frac{b}{2}, Q \mid s\right)$ was derived in ${ }^{\mathrm{B}}$ by a free field computation and can also be deduced from the general formula for the bulkboundary structure constant 18] by carefully taking the relevant limit as sketched in 19.

One may wonder how the shift equations (3.6), where the factor R_{s}^{a} depends on the type of brane ($a \in\{\mathrm{ZZ}, \mathrm{FZZT}\}$), can be compatible with the linear relation (3.2) between ZZ and FZZT branes. The compatibility actually requires the non-trivial relation $R_{(m, n)}^{Z Z}=$ $R_{s=i \frac{m b^{-1}+n b}{2}}^{\mathrm{FZZT}}=R_{s=i \frac{m b^{-1}-n b}{2}}^{\mathrm{FZZT}}$. A direct computation shows that this relation is indeed obeyed:

$$
\begin{equation*}
\frac{\Psi_{(m, n)}^{\mathrm{ZZ}}\left(-\frac{b}{2}\right)}{\Psi_{(m, n)}^{\mathrm{ZZ}}(0)}=R_{i \frac{m b-1+n b}{2}}^{\mathrm{FZZT}}=R_{i \frac{m b-1-n b}{2}}^{\mathrm{FZZT}}=-2 \pi \sqrt{\frac{\mu_{L}}{\sin \pi b^{2}}} \frac{\Gamma\left(-1-2 b^{2}\right)}{\Gamma\left(-b^{2}\right)^{2}}(-1)^{m} \cos \pi n b^{2} .(3 \tag{3.9}
\end{equation*}
$$

This analysis of the Liouville branes' shift equations can be generalized to H_{3}^{+}branes' shift equations. The continuous $A d S_{2}$ branes are indeed known to satisfy an equation of the type [7]

$$
\begin{equation*}
R_{r}^{A d S_{2}} \Psi_{r}^{A d S_{2}}(j)=F_{-}^{H_{3}^{+}} \Psi_{r}^{A d S_{2}}\left(j-\frac{1}{2}\right)+F_{+}^{H_{3}^{+}} \Psi_{r}^{A d S_{2}}\left(j+\frac{1}{2}\right) . \tag{3.10}
\end{equation*}
$$

In the notations of [7] , the quantity $R_{r}^{A d S_{2}}$ can be computed explicitly as $R_{r}^{A d S_{2}}=(x+$ $\bar{x}) B\left(\frac{1}{2}\right) A\left(\frac{1}{2}, 0 \mid r\right)$ (see in particular the equation (3.28) therein) ${ }^{2}$.

Now the shift equation for discrete branes in H_{3}^{+}should be identical to that for continuous branes, except for the replacement of $R_{r}^{A d S_{2}}$ with

$$
\begin{equation*}
R_{(m, n)}^{A d S_{2}^{d}}=\frac{\Psi_{(m, n)}^{A d S_{2}^{d}}\left(j=\frac{1}{2}\right)}{\Psi_{(m, n)}^{A d S_{2}^{d}}(j=0)} . \tag{3.11}
\end{equation*}
$$

[^0]Does the ansatz (3.4) satisfy the resulting shift equation? Like in Liouville theory, the shift equation for discrete branes boils down to the equations

$$
\begin{equation*}
R_{(m, n)}^{A d S_{2}^{d}} \stackrel{!}{=} R_{r=i \pi\left(m-\frac{1}{2}+n b^{2}\right)}^{A d S_{2}} \stackrel{!}{=} R_{r=i \pi\left(m-\frac{1}{2}-n b^{2}\right)}^{A d S_{2}} . \tag{3.12}
\end{equation*}
$$

These equations can now be checked by direct calculation, and the three quantities to be compared are indeed all equal to

$$
\begin{equation*}
2 i|x+\bar{x}| \operatorname{sgn}(x+\bar{x}) \sqrt{\nu_{b}} \frac{\Gamma\left(1+2 b^{2}\right)}{\Gamma\left(1+b^{2}\right)}(-1)^{m} \cos \pi n b^{2} . \tag{3.13}
\end{equation*}
$$

3.3 Checks and interpretations à la Cardy

3.3.1 D-branes and representation theory

Let me discuss how the proposed discrete $A d S_{2}$ branes help to complete the list of D-branes in the Euclidean $A d S_{3}$. Cardy has shown that in rational two-dimensional conformal field theories, symmetry-preserving D-branes are naturally associated to representations of the relevant symmetry algebra [20]. This idea can be extended to Liouville theory. To start with, the continuous FZZT branes are naturally associated to the continuous representations of the Virasora algebra, which appear in the physical Liouville spectrum and have momenta $\alpha \in \frac{Q}{2}+i \mathbb{R}$ (with $Q=b+b^{-1}$). In order to account for the ZZ branes in terms of representation theory, one has to go beyond the physical spectrum and take into account the degenerate representations appearing in the Kac table, with momenta

$$
\begin{equation*}
2 \alpha_{m n}-Q=m b^{-1}+n b, \tag{3.14}
\end{equation*}
$$

where (m, n) are still strictly positive integers, and I ignore the reflected degenerate representations $2 \alpha_{m n}-Q=-\left(m b^{-1}+n b\right)$ because the reflection symmetry of Liouville theory makes them redundant. Now, the relation (2.3) between the Liouville momentum and the H_{3}^{+}spin relates the Virasoro degenerate representations to $\widehat{s \ell_{2}}$ degenerate representations with spins

$$
\begin{equation*}
2 j_{m n}+1=m b^{-2}+n . \tag{3.15}
\end{equation*}
$$

The discrete $A d S_{2}$ branes should be considered as associated with such representations, whereas the ordinary $A d S_{2}$ branes would be associated with the physical continuous representations $j \in-\frac{1}{2}+i \mathbb{R}$. This interpretation of the $A d S_{2}$ branes was already considered in [7] (section 4.2), which suggested the following relation between representation spins j and brane parameters r :

$$
\begin{equation*}
j(r)=-\frac{1}{2}-\frac{1}{4 b^{2}}+i \frac{r}{2 \pi b^{2}} . \tag{3.16}
\end{equation*}
$$

However, as observed in [7], this relation does not give physical values $j \in-\frac{1}{2}+i \mathbb{R}$ for r real due to the term $-\frac{1}{4 b^{2}}$. But this term precisely corresponds to the shift in the $A d S_{2}$-FZZT relation (2.8), and now seems rather natural. The reflection symmetry of the spectrum $j \rightarrow-j-1$ then corresponds to the invariance of the FZZT branes under $s \rightarrow-s$.

Now replacing r in eq. (3.16) with the values appropriate for discrete $A d S_{2}$ branes (3.4) gives the spins of the $\widehat{s \ell_{2}}$ degenerate representations with null vector at nonzero level: $2 j\left(r=i \pi\left[m-\frac{1}{2}+n b^{2}\right]\right)+1=-\left(m b^{-2}+n\right)$.

There is another series of degenerate representations of $\widehat{\ell_{2}}$ with $m=0$, which do not correspond to Virasoro degenerate representations because they have a null vector at level zero [21]. D-branes corresponding to these representations are therefore not expected to be simply related to Liouville theory objects. There exist natural candidates for such D-branes: the S^{2} branes with imaginary radius of (7]. In contrast to the $A d S_{2}$ branes which preserve an $S L(2, \mathbb{R})$ symmetry out of the $S L(2, \mathbb{C})$ of the H_{3}^{+}model, the S^{2} branes preserve an $\operatorname{SU}(2)$ symmetry. The degenerate representations with level zero null vectors are unitary as $\mathrm{SU}(2)$ representations, and they indeed appear in the physical spectrum of the S^{2} branes.

The representations mentioned so far are summarized in the following table, which should be compared to the picture of the moduli spaces of D-branes in H_{3}^{+}and Liouville theory in the Introduction:

3.3.2 Computation of the annulus amplitudes

In the context of rational conformal field theories, Cardy has shown that the consistency of the spectrum of open strings on a D-brane (i.e. the requirement that it consists of finitely many representations with positive integer multiplicities) leads to a strong constraint on the one-point function of that D-brane [20]. In non rational conformal field theories, the spectrum of open strings should consist of continous states with a positive density and/or discrete states with positive integer multiplicities. The consistency of the $\operatorname{Ad} S_{2}$ branes has already been checked in this way in [7, 22]. The study of this type of consistency conditions is sometimes called the modular bootstrap approach [23].

The open-string spectrum is related to the one-point function via the annulus amplitude $Z_{\left(m_{1}, n_{1}\right)\left(m_{2}, n_{2}\right)}^{A d S S^{d}}=\operatorname{Tr} \tilde{q}^{L_{0}-\frac{c}{24}}$ where the powers of \tilde{q} are the energies of the open-string states ${ }^{3}$. Like the annulus amplitude for $A d S_{2}$ branes, the annulus amplitude for open strings stretched between two $A d S_{2}^{d}$ branes is most easily computed in the μ basis. (A naive x-basis computation would give a wrong result due to an improper treatment of the

[^1]divergences [7].)
\[

$$
\begin{align*}
Z_{\left(m_{1}, n_{1}\right)\left(m_{2}, n_{2}\right)}^{A d S^{d}} & =\int_{-\frac{1}{2}+i \mathbb{R}} d j \int_{\mathbb{C}} \frac{d^{2} \mu}{|\mu|^{2}} \Psi_{\left(m_{1}, n_{1}\right)}^{A d S^{d}}\left(\Psi_{\left(m_{2}, n_{2}\right)}^{A d S^{d}}\right)^{*} \frac{q^{-\frac{b^{2}}{4}(2 j+1)^{2}}}{\prod_{\ell=1}^{\infty}\left(1-q^{\ell}\right)^{3}} \tag{3.17}\\
& =\delta(0) \int_{0}^{\infty} 1 \times \sum_{n \in n_{1} \times n_{2}}\left(\sum_{m \in m_{1} \times m_{2}}+\sum_{m \in\left(m_{1}-1\right) \times\left(m_{2}-1\right)}\right) \chi_{m n}(\tilde{q}) \tag{3.18}
\end{align*}
$$
\]

In this formula, $m \in m_{1} \times m_{2}$ means $\left|m_{1}-m_{2}\right|<m<m_{1}+m_{2}$ while $m_{1}+m_{2}-m$ is an odd integer (like in $\left.\frac{\sin m_{1} x \sin m_{2} x}{\sin x}=\sum_{m \in m_{1} \times m_{2}} \sin m x\right)$, and $\chi_{m n}(q)=\eta^{-3}(q)\left(q^{-\frac{1}{4}\left(m b^{-1}+n b\right)^{2}}-\right.$ $q^{-\frac{1}{4}\left(m b^{-1}-n b\right)^{2}}$) is an $\widehat{s \ell_{2}}$ degenerate character [21]. The infinite prefactors (which come from the integral $\left.\int_{\mathbb{C}} d^{2} \mu\right)$ result from the $S L(2, \mathbb{R})$ symmetry of the $A d S_{2}^{d}$ branes and are similar to infinite prefactors appearing in the annulus amplitude of $A d S_{2}$ branes [7]. In the case of $A d S_{2}$ branes, there was an extra divergence of the integral $\int d j$ at $j=-\frac{1}{2}$. This zero radial momentum divergence reflected the infinite extension of the $A d S_{2}$ branes in the radial direction and is absent in the case of the $A d S_{2}^{d}$ branes.

Therefore, the spectrum of open strings on the $A d S_{2}^{d}$ branes is consistent. The spectrum of open strings between $A d S_{2}$ and $A d S_{2}^{d}$ branes is also made of discrete states with integer multiplicities, but these states can have imaginary conformal dimensions, as is clear from the formula:

$$
\begin{align*}
& Z_{r,(m, n)}^{A d S_{2}-A d S_{2}^{d}} \propto \int d j \frac{q^{-\frac{b^{2}}{4}(2 j+1)^{2}}}{\prod_{\ell=1}^{\infty}\left(1-q^{\ell}\right)^{3}} \frac{\sin \pi n b^{2}(2 j+1)}{\sin \pi b^{2}(2 j+1)} \\
& \times\left[\frac{\sin \pi(m-1)(2 j+1)}{\sin \pi(2 j+1)} \cosh \left(r-i \frac{\pi}{2}\right)(2 j+1)+\frac{\sin \pi m(2 j+1)}{\sin \pi(2 j+1)} \cosh \left(r+i \frac{\pi}{2}\right)(2 j+1)\right] \tag{3.19}
\end{align*}
$$

The Gaussian integral on j will indeed yield powers of \tilde{q} which are not real. In such cases I will say that $Z_{r \neq 0,(m, n)}^{A d S_{2}-A d S_{2}^{d}}$ has an imaginary spectrum pathology. Note however that this pathology is not an inconsistency of the conformal field theory with boundary conditions defined by $A d S_{2}^{d}$ branes. The pathology only prevents the $A d S_{2}^{d}$ branes to be interpreted as physical string theory objects in the presence of $A d S_{2}$ branes.

Actually, the ZZ branes with $(m, n) \neq(1,1)$ in Liouville also have this imaginary spectrum pathology, which does not prevent them from playing an important rôle in the theory. Note also that the pathology can be absent in the case of some branes constructed from the $A d S_{2}^{d}$ branes as I will argue in the context of the 2 d black hole $S L(2, \mathbb{R}) / U(1)$.

4. More branes in the 2d black hole

D-branes in the 2d "cigar" Euclidean black hole $S L(2, \mathbb{R}) / U(1)$ can be obtained from Dbranes in the Euclidean $A d S_{3}$ by a descent procedure 10. On the one hand this will yield more consistency checks for the new D-branes constructed in the present article, and on the other hand this will suggest a comparison with matrix model results.

4.1 Known branes and new branes in the 2d black hole

Let me now recall the one-point functions of the $S L(2, \mathbb{R}) / U(1)$ bulk fields $\Phi_{n^{\prime}, w}^{j}$ in the presence of boundary conditions defined by the D-branes descending from S^{2} and $A d S_{2}$ branes in H_{3}^{+}.

A D0-brane in the cigar descends from an S^{2} branes in H_{3}^{+}labelled by a strictly positive integer n :

$$
\begin{equation*}
\Psi_{n}^{D 0}=\delta_{n^{\prime} 0} \nu_{b}^{j+\frac{1}{2}} \frac{k^{\frac{1}{4}} b^{-\frac{1}{2}}}{2 \pi(-1)^{n w+1}} \frac{\Gamma\left(\frac{k w}{2}-j\right) \Gamma\left(-\frac{k w}{2}-j\right)}{\Gamma(-2 j)} \Gamma\left(1+b^{2}(2 j+1)\right) \sin \pi n b^{2}(2 j+1)(4 \tag{4.1}
\end{equation*}
$$

A D1-brane in the cigar descends from an $A d S_{2}$ brane in H_{3}^{+}with a real parameter r and an angle θ_{0} :

$$
\begin{equation*}
\Psi_{r}^{D 1}=\delta_{w, 0} e^{i n^{\prime} \theta_{0}} \nu_{b}^{j+\frac{1}{2}} \frac{\frac{1}{-\frac{1}{4}} b^{-\frac{1}{2}}}{2} \frac{\Gamma(2 j+1) \Gamma\left(1+b^{2}(2 j+1)\right)}{\Gamma\left(1+j+\frac{n^{\prime}}{2}\right) \Gamma\left(1+j-\frac{n^{\prime}}{2}\right)}\left(e^{-r(2 j+1)}+(-1)^{n^{\prime}} e^{r(2 j+1)}\right)(4 \tag{4.2}
\end{equation*}
$$

A D2-brane in the cigar also descends from an $A d S_{2}$ brane in H_{3}^{+}, whose parameter r now has to be taken pure imaginary $r=i \sigma$. The real parameter σ of the D 2 -branes is quantized in units of $2 \pi b^{2}$ and bounded $|\sigma|<\frac{\pi}{2}\left(1+b^{2}\right)$.

$$
\begin{align*}
\Psi_{\sigma}^{D 2}=\delta_{n^{\prime}, 0} \nu_{b}^{j+\frac{1}{2}} \frac{k^{\frac{1}{4}} b^{-\frac{1}{2}}}{2 \pi} & \Gamma(2 j+1) \Gamma\left(1+b^{2}(2 j+1)\right) \\
& \times\left(\frac{\Gamma\left(-j+\frac{k w}{2}\right)}{\Gamma\left(j+1+\frac{k w}{2}\right)} e^{i \sigma(2 j+1)}+\frac{\Gamma\left(-j-\frac{k w}{2}\right)}{\Gamma\left(j+1-\frac{k w}{2}\right)} e^{-i \sigma(2 j+1)}\right) \tag{4.3}
\end{align*}
$$

New discrete branes can be obtained in $S L(2, \mathbb{R}) / U(1)$ from the discrete $A d S_{2}$ branes in H_{3}^{+}. Like the original $A d S_{2}$ branes, the discrete $A d S_{2}$ branes give rise to two families of D-branes in the coset. Their one-point functions can be obtained from D1- and D2-branes' one-point functions thanks to the formula (3.4). Let me first consider the D1 ${ }^{d}$-branes obtained from the D1-branes:

$$
\begin{align*}
\Psi_{(m, n)}^{\mathrm{D}^{d}}=\delta_{w, 0} e^{i n^{\prime}\left(\theta_{0}+\frac{\pi}{2}\right)} \nu_{b}^{j+\frac{1}{2}} 2 k^{-\frac{1}{4}} b^{-\frac{1}{2}} & \frac{\Gamma(2 j+1) \Gamma\left(1+b^{2}(2 j+1)\right)}{\Gamma\left(j+1+\frac{n^{\prime}}{2}\right) \Gamma\left(j+1-\frac{n^{\prime}}{2}\right)} \\
& \times \sin \pi\left[(2 j+1)\left(m-\frac{1}{2}\right)+\frac{n^{\prime}}{2}\right] \sin \pi n b^{2}(2 j+1) . \tag{4.4}
\end{align*}
$$

The spectrum encoded in the annulus amplitude $Z_{\left(m_{1}, n_{1}\right)\left(m_{2}, n_{2}\right)}^{\mathrm{D} d^{d}}$ contains a finite number of discrete representations with positive integer multiplicities and is therefore consistent. (However, I did not find the marginal field which might have been expected from the existence of a modulus θ_{0}.) Note also that the amplitude $Z_{r \neq 0,(m, n)}^{\mathrm{D} 1-\mathrm{D1} 1^{d}}$ suffers from the same imaginary spectrum pathology as the amplitude $Z_{r \neq 0,(m, n)}^{A d S_{2}-A d S_{2}^{d}}$ in H_{3}^{+}.

The $\mathrm{D} 2^{d}$-branes obtained from the D 2 -branes are characterized by the one-point function:

$$
\begin{align*}
\Psi_{(m, n)}^{\mathrm{D}^{d}}= & \delta_{n^{\prime}, 0} \nu_{b}^{j+\frac{1}{2}} i \frac{k^{\frac{1}{4}} b^{-\frac{1}{2}}}{\pi} \Gamma(2 j+1) \Gamma\left(1+b^{2}(2 j+1)\right) \sin \pi n b^{2}(2 j+1) \\
& \times\left(\frac{\Gamma\left(-j+\frac{k w}{2}\right)}{\Gamma\left(j+1+\frac{k w}{2}\right)} e^{i \pi\left(m-\frac{1}{2}\right)(2 j+1)}-\frac{\Gamma\left(-j-\frac{k w}{2}\right)}{\Gamma\left(j+1-\frac{k w}{2}\right)} e^{-i \pi\left(m-\frac{1}{2}\right)(2 j+1)}\right) . \tag{4.5}
\end{align*}
$$

The spectrum encoded in the annulus amplitude $Z_{\left(m_{1}, n_{1}\right)\left(m_{2}, n_{2}\right)}^{\mathrm{D})^{d}}$ contains a finite number of discrete representations with positive integer multiplicities and is therefore consistent. ${ }^{4}$

The spectrum $Z_{\sigma,(m, n)}^{\mathrm{D} 2-\mathrm{D} 2^{d}}$ is also consistent and free from the imaginary spectrum pathology, because the D 2 -brane parameter σ comes from pure imaginary values of the $A d S_{2}$ brane parameter r. However, it might be more relevant to examine the amplitude $Z_{r,(m, n)}^{\mathrm{D} 1-\mathrm{D} 2^{d}}$, which is more difficult to compute because of the difference in gluing conditions between D1- and $\mathrm{D} 2^{d}$-branes. This difficulty is no obstacle to finding that $Z_{\neq 0,(m, n)}^{\mathrm{D} 1-\mathrm{D} 2^{d}}$ has the imaginary spectrum pathology ${ }^{5}$ except if $(m, n)=(1,1)$, like the amplitude $Z_{s,(m, n)}^{F Z Z Z-Z Z}$ in Liouville theory. Notice that $Z_{r \neq 0, n}^{\mathrm{D} 1-\mathrm{D} 0}$ is also free from the imaginary spectrum pathology only for $n=1$. The D 0 - and $\mathrm{D} 2^{d}$-branes with parameters n and $(1, n)$ respectively behave identically in this respect because their overlaps with D1-branes only involve closed strings with winding zero, which make no difference between them: $\Psi_{n}^{\mathrm{DO}}(w=0)=\Psi_{(1, n)}^{\mathrm{D}^{d}}(w=0)$.

4.2 Geometric and non-geometric D-branes

Let me discuss whether the new $\mathrm{D} 1^{d}$ - and $\mathrm{D} 2^{d}$-branes have a geometric interpretation. A geometric description of the 2 d black hole is possible in the limit $k \rightarrow \infty$ which corresponds to small string length $\ell_{s}=\sqrt{\alpha^{\prime}}$ (while $\sqrt{k \alpha^{\prime}}$ is a fixed length). First recall the geometric interpretation of the known D0-, D1- and D2-branes (10] as zero-, one- and two-dimensional geometric objects in the 2d black hole. This can be seen in the large k behaviour of the one-point functions,

$$
\begin{equation*}
\Psi_{n}^{\mathrm{D} 0} \sim k^{-\frac{1}{2}} \quad, \quad \Psi_{\left(r, \theta_{0}\right)}^{\mathrm{D} 1} \sim 1 \quad, \quad \Psi_{\sigma}^{\mathrm{D} 2} \sim k^{\frac{1}{2}} . \tag{4.6}
\end{equation*}
$$

How this behaviour depends on the dimensionality of the D-branes is indeed consistent with the dependence of the D-branes' tensions $T \propto\left(\alpha^{\prime}\right)^{-\frac{p}{2}}$ with respect to the D-branes' dimensions p.

Now the observation (from the previous subsection) that closed strings with zero winding couple identically to D 0 -branes and to $\mathrm{D} 2^{d}$-branes implies that the $\mathrm{D} 2^{d}$-branes should be interpreted as pointlike branes at the tip of the cigar like the D0-branes. The behaviour

[^2]of $\mathrm{D} 1^{d}$-branes is different:
\[

$$
\begin{equation*}
\Psi_{(m, n)}^{\mathrm{D1}^{d}} \sim k^{-1} \tag{4.7}
\end{equation*}
$$

\]

thus their one-point functions decrease too fast at large k to allow a geometric interpretation. It is possible to call the D1 ${ }^{d}$-branes "anisotropic localized branes at the tip of the cigar" only in a heuristic sense.

Let me nevertheless compare this heuristic geometric picture to the situation in Liouville theory. The localization of the D1 ${ }^{d}$-branes at the tip of the cigar, and the existence of continuous D1-branes extending from infinity up to some finite distance from the tip (a distance determined by their parameter r), are similar to the localization of the ZZ branes at strong Liouville coupling, together with the existence of FZZT branes extending to infinity. The situation of the $\mathrm{D} 2^{d}$ - and D 2 -branes is quite different since the D 2 -branes extend to the tip where the D2 ${ }^{d}$-branes are located. However, a species of branes with the same gluing conditions as the D2-branes and a behaviour similar to that of the FZZT branes has been predicted to exist [25, 26]: the D-branes descending from $d S_{2}$ branes in $A d S_{3}$ [27], which I will also call $d S_{2}$ branes:

ZZ
FZZT
The geometry of the $d S_{2}$ branes in $A d S_{3}$ suggests that the $d S_{2}$ branes in the cigar are parametrized by a real number r^{\prime} related to the D2-brane's parameter σ by $\sigma=\frac{\pi}{2}+i r^{\prime}$. The identifications $\sigma=i r$ and $r=2 \pi b s-i \frac{\pi}{2}$ (from eq. (2.8)) then imply the relation $r^{\prime}=2 \pi b s$ between the $d S_{2}$ brane parameter r^{\prime} and the FZZT brane parameter s. In addition, the $d S_{2}$ brane is expected to be invariant under $r^{\prime} \rightarrow-r^{\prime}$ like the FZZT brane under $s \rightarrow-s$. This supports the idea of a close relationship between $d S_{2}$ branes in the cigar and FZZT branes in Liouville theory.

4.3 A shift equation from $N=2$ Liouville theory

Let me now compare the D-branes in the 2 d black hole with D-branes in the $N=2$ supersymmetric Liouville theory. The $N=2$ Liouville theory is indeed equivalent to the $N=2$ supersymmetric 2 d black hole theory [28], which is itself very similar to the bosonic 2d black hole theory which has been considered in this section. (On the other hand, the $N=2$ Liouville theory is considerably more complicated than bosonic Liouville theory.) The comparison of D-branes is relevant to this article because it will provide an independent shift equation for the one-point functions of the new D1 ${ }^{d}$-branes. This is based
on the article on $N=2$ Liouville theory by Hosomichi [11], which among many interesting results formulates a shift equation with j-shift by $\frac{k}{2}$ in addition to the shift equation with j-shift by $\frac{1}{2}$ considered in subsection 3.2. These two possible shifts are independent if k is not rational. However, in contrast to the two elementary α-shifts in Liouville theory (by $\frac{1}{2 b}$ and $\frac{b}{2}$) which are related by a simple selfduality of the theory, the two shifts in $\mathrm{N}=2$ Liouville theory must be analyzed independently.

The D1-branes in the 2d black hole (4.2) correspond to Hosomichi's B-branes, 11] (4.55). According to the principles of subsection 3.2, the D1 ${ }^{d}$-branes should therefore satisfy

$$
\begin{equation*}
\left.\frac{\Psi_{(m, n)}^{\mathrm{D}^{d}}\left(j=-\frac{k}{2}, n^{\prime}\right)}{\Psi_{(m, n)}^{\mathrm{D}^{d}}\left(j=0, n^{\prime}=0\right)} \stackrel{!}{=} c^{\downarrow} t^{\rrbracket}\left(\frac{n^{\prime}}{2},-\frac{n^{\prime}}{2}\right)\right|_{r=i \pi\left(m-\frac{1}{2} \pm n b^{2}\right)}, \tag{4.8}
\end{equation*}
$$

where $c^{\downarrow} t \downarrow$ is explicitly known [11] (4.55), and the $N=2$ Liouville degenerate spin $\frac{k}{2}$ becomes $-\frac{k}{2}$ in $S L(2, \mathbb{R}) / U(1)$ after $k \rightarrow k-2$ and reflection. If proper care is taken of the other differences of conventions, this equation is found to hold.

The D2-branes in the 2d black hole (4.3) correspond to Hosomichi's chiral or anti-chiral A-branes, [11] (3.26). The $\frac{k}{2}$-shift equation for these branes 11] (4.33) has a vanishing lefthand side, leading to the condition:

$$
\begin{equation*}
\frac{\Psi_{(m, n)}^{\mathrm{D}^{d}}\left(j=-\frac{k}{2}, w\right)}{\Psi_{(m, n)}^{\mathrm{D} 2^{d}}(j=0, w=0)} \stackrel{!}{=} 0 . \tag{4.9}
\end{equation*}
$$

Surprisingly, this equation holds due to the denominator being infinite. It therefore provides a rather trivial check of the discrete D2-branes's one-point function $\Psi_{(m, n)}^{\mathrm{D}^{d}}$.

To summarize, translating the new $A d S_{2}^{d}$ branes to the D1 ${ }^{d}$-branes in the 2 d black hole and then to $N=2$ Liouville theory has yielded a strong independent check of their consistency.

In addition, the new $A d S_{2}^{d}$ branes translate into two new families of discrete D-branes in $\mathrm{N}=2$ Liouville theory, associated to the continuous B-branes and chiral or anti-chiral A-branes of [11]. Note in particular that the $\mathrm{N}=2$ Liouville incarnation of the $\mathrm{D} 2^{d}$-branes differ from the already known non-chiral degenerate A-branes, 11] (3.23). These discrete A-branes are actually associated to the continuous non-chiral non-degenerate A-branes, [11] (3.21). Since there exist two types of continuous A-branes in $\mathrm{N}=2$ Liouville theory (chiral or anti-chiral on the one hand, non-chiral on the other hand), it is not surprising that there exist two corresponding types of discrete A-branes.

For completeness, let me point out that the degenerate chiral A-branes, 11] (3.33) and their special case the identity A-brane, [11] (3.18) clearly correspond to D0-branes in the 2 d black hole. It would be interesting to study the completeness of D-branes in the 2 d black hole and in $\mathrm{N}=2$ Liouville theory.

Acknowledgments

I am supported by a fellowship from the Alexander von Humboldt Stiftung. I am grateful to Sergei Alexandrov, Thomas Quella, Andreas Recknagel, Volker Schomerus and Jörg

Teschner for interesting conversations. In addition, I wish to thank Sakura Schäfer-Nameki and Volker Schomerus for helpful comments on the draft of this article. I benefitted from the hospitality of the Erwin-Schrödinger Institut in Vienna.

References

[1] P. Forgacs, A. Wipf, J. Balog, L. Feher and L. O'Raifeartaigh, Liouville and toda theories as conformally reduced WZNW theories, Phys. Lett. B 227 (1989) 214.
[2] S. Mukhi and C. Vafa, Two-dimensional black hole as a topological coset model of $c=1$ string theory, Nucl. Phys. B 407 (1993) 667 hep-th/9301083.
[3] L. Rastelli and M. Wijnholt, Minimal $A d S_{3}$, hep-th/0507037.
[4] A.B. Zamolodchikov and V.A. Fateev, Operator algebra and correlation functions in the two-dimensional Wess-Zumino $\mathrm{SU}(2) \times \mathrm{SU}(2)$ chiral model, Sov. J. Nucl. Phys. 43 (1986) 657.
[5] S. Ribault and J. Teschner, H(3) + WZNW correlators from Liouville theory, JHEP 06 (2005) 014 hep-th/0502048.
[6] A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152.
[7] B. Ponsot, V. Schomerus and J. Teschner, Branes in the euclidean AdS , JHEP 02 (2002) 016 hep-th/0112198.
[8] V. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, Boundary Liouville field theory, I. Boundary state and boundary two-point function, hep-th/0001012.
[9] J. Teschner, Remarks on Liouville theory with boundary, hep-th/0009138.
[10] S. Ribault and V. Schomerus, Branes in the 2D black hole, JHEP 02 (2004) 019 hep-th/0310024.
[11] K. Hosomichi, $N=2$ Liouville theory with boundary, hep-th/0408172.
[12] S. Ribault, Knizhnik-Zamolodchikov equations and spectral flow in $A d S_{3}$ string theory, JHEP 09 (2005) 045 hep-th/0507114.
[13] P. Lee, H. Ooguri and J.-w. Park, Boundary states for $A d S_{2}$ branes in $A d S_{3}$, Nucl. Phys. B 632 (2002) 283 hep-th/0112188.
[14] V.G. Knizhnik and A.B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nucl. Phys. B 247 (1984) 83.
[15] K. Gawȩdzki, Noncompact WZW conformal field theories, hep-th/9110076.
[16] V. Schomerus, Lectures on branes in curved backgrounds, Class. and Quant. Grav. 19 (2002) 5781 hep-th/0209241.
[17] A.V. Stoyanovsky, A relation between the Knizhnik-Zamolodchikov and Belavin-Polyakov-Zamolodchikov systems of partial differential equations, math-ph/0012013.
[18] K. Hosomichi, Bulk-boundary propagator in Liouville theory on a disc, JHEP 11 (2001) 044 hep-th/0108093.
[19] V. Schomerus, Non-compact string backgrounds and non-rational CFT, Phys. Rept. 431 (2006) 39 hep-th/0509155.
[20] J.L. Cardy, Boundary conditions, fusion rules and the verlinde formula, Nucl. Phys. B 324 (1989) 581.
[21] M. Kato and Y. Yamada, Missing link between virasoro and SL(2) Kac-Moody algebras, Prog. Theor. Phys. Suppl. 110 (1992) 291-302.
[22] S. Ribault, Two $A d S_{2}$ branes in the euclidean $A d S_{3}$, JHEP 05 (2003) 003 hep-th/0210248.
[23] A.B. Zamolodchikov and A.B. Zamolodchikov, Conformal field theory and 2D critical phenomena, 6. Modular bootstrap, ITEP-90-103.
[24] D. Israel, A. Pakman and J. Troost, D-branes in $N=2$ Liouville theory and its mirror, Nucl. Phys. B 710 (2005) 529 hep-th/0405259.
[25] A. Fotopoulos, Semiclassical description of D-branes in $S L(2) / U(1)$ gauged WZW model, Class. Quant. Grav. 20 (2003) S465-S472 hep-th/0304015.
[26] S. Ribault, Strings and D-branes in curved space-times. (in french), hep-th/0309272.
[27] C. Bachas and M. Petropoulos, Anti-de-sitter D-branes, JHEP 02 (2001) 025 hep-th/0012234.
[28] K. Hori and A. Kapustin, Duality of the fermionic 2D black hole and $N=2$ Liouville theory as mirror symmetry, JHEP 08 (2001) 045 hep-th/0104202.

[^0]: ${ }^{1}$ In the article [6] the denominator $\Psi^{\mathrm{ZZ}}(\alpha=0)$ is absent from $R_{(m, n)}^{\mathrm{ZZ}}$ because the one-point function is normalized so that $\Psi^{\mathrm{ZZ}}(\alpha=0)=1$.
 ${ }^{2}$ Note that $\nu_{b}=\pi \frac{\Gamma\left(1-b^{2}\right)}{\Gamma\left(1+b^{2}\right)}$ now has an extra factor π wrt 7 so that $\Phi^{j=0}$ is the identity field, see eq. (2.5) of the present article and footnote 7 of [7]. Also note that the requirement $B(j=0)=1$ leads to a different sign for $B(j)$ as compared to [7].

[^1]: ${ }^{3}$ With standard conventions: $\tilde{q}=\exp -\frac{2 \pi i}{\tau}$ and $q=\exp 2 \pi i \tau$ where τ is the modular parameter of the annulus

[^2]: ${ }^{4}$ The detailed computation of this spectrum for $m_{1} \neq m_{2}$ would require a non-trivial generalization of the calculations in 10. Note also that the multiplicities are positive in contrast to the D2-brane case [24], due to the sign difference between the second lines of eqs (4.3) and (4.5).
 ${ }^{5}$ The imaginary spectrum pathology is absent from such a discrete annulus amplitude if and only if $\Psi_{r}^{\mathrm{D} 1}\left(\Psi_{(m, n)}^{\mathrm{D} 2^{d}}\right)^{*}$ is a linear combination of a finite number of terms of the type $\cos \lambda(2 j+1)$ with λ either real or pure imaginary. The pathology results from such terms with a generic complex λ.

