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1. Introduction and overview

Liouville theory and string theories with an affine ŝ`2 symmetry have played an important

rôle in recent studies of time-dependent string theory, two-dimensional quantum grav-

ity, and the AdS/CFT correspondence. The features of these theories which are well-

understood suggest that they share many important properties. This is not surprising

considering that the Virasoro algebra of Liouville theory can be obtained from the ŝ`2

affine Lie algebra by a quantum Hamiltonian reduction [1]. This suggests that Liouville

theory can be found as a subsector of theories with an ŝ`2 symmetry. For example, AdS3

string theory can be reduced to Liouville theory via a topological twist [2, 3].

Conversely, it would be interesting to reconstruct the full AdS3 string theory in terms of

the better-understood Liouville theory. A hint that this can be done comes from Zamolod-

chikov and Fateev’s relation [4] between the Knizhnik–Zamolodchikov (KZ) and Belavin–

Polyakov–Zamolodchikov (BPZ) systems of differential equations, which reflect the ŝ`2 and

Virasoro symmetries respectively. More recently, all correlation functions of the H+
3 model

(the Euclidean version of AdS3 string theory) on a sphere have been written in terms of

Liouville correlation functions [5]. Proving this relation relied on the prior knowledge of
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these H+
3 correlation functions in terms of well-characterized objects, namely the three-

point structure constants and the conformal blocks. However, the H+
3 -Liouville relation

would be most useful if it allowed the construction of previously unknown objects in the H+
3

model from known objects in Liouville theory. One purpose of this article is to demonstrate

that it indeed does.

The new objects in the H+
3 model which I plan to construct are discrete D-branes (in

both meanings of having a discrete open string spectrum and coming in a discrete fam-

ily) which correspond to the Zamolodchikov–Zamolodchikov (ZZ) D-branes in Liouville

theory [6]. I will first determine a relation between the known continuous AdS2 branes

in the H+
3 model [7] and the continuous Fateev–Zamolodchikov–Zamolodchikov–Teschner

(FZZT) D-branes in Liouville theory [8, 9]. The main feature of this relation is the corre-

spondence (2.8) between the parameters of these families of D-branes, which associates two

different FZZT branes to one AdS2 brane. Moreover, it is possible to relate the correlators

of bulk fields in the presence of FZZT and AdS2 branes eq. (2.10), but only in a particular

regime which I will call the bulk regime. This is due to singularities in the H+
3 conformal

blocks, which have a clear interpretation – but so far no resolution – in terms of Liouville

theory.

The relation between FZZT and AdS2 branes will then suggest a natural ansatz for

a family of discrete branes in H+
3 parametrized by two integers (m,n), related to the ZZ

branes of Liouville theory. The most useful characterization of these branes, which I will

call AdSd
2 branes, is the relation to the AdS2 branes eq. (3.4). (The name AdSd

2 refers to

that relation and not to the geometry of the new discrete branes.) These AdSd
2 branes

will be shown to be solutions of the same shift equation that was checked for the AdS2

branes [7]. How to modify this equation for the case of discrete branes will be suggested

by Liouville theory. I will then propose a tentative relation between ŝ`2 representations

and D-branes in H+
3 , inspired by the Cardy relation which holds in rational conformal field

theories, and which may help understand which H+
3 D-branes can be related to Liouville

branes and which ones cannot.

From the new discrete D-branes in the H+
3 model, two families of compact D-branes

in the 2d “cigar” black hole SL(2, R)/U(1) obeying two different gluing conditions can be

constructed along the lines of [10]. Some of these D-branes have a geometric interpretation

as D0-branes at the tip of the cigar, the others do not have any geometric interpretation.

These new D-branes in the 2d black hole can then easily be translated into D-branes in the

N = 2 Liouville theory in Hosomichi’s formalism [11], which provides a second independent

shift equation.
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Liouville H+
3

SL(2, R)/U(1) N = 2 Liouville

FZZT (s)

ZZ (m,n)

AdS2 (r)

AdSd
2 (m,n)

D1 (r)

D2 (σ)

D1d (m,n)

D2d (m,n)

B-branes

chiral A-branes

new B-type branes

new A-type branes

S2 (n) D0 (n) chiral degenerate
A-branes

s= i
2
(mb−1±nb) r=iπ(m− 1

2
±nb2)

s= r
2πb

± i
4b

(m,n) (m−1,n)

r=iσ

2. AdS2 D-branes from Liouville theory

The aim of this section is to generalize the relation between H+
3 and Liouville bulk corre-

lators on the Riemann sphere [5] to correlators of bulk fields in the presence of worldsheet

boundaries described by continuous D-branes: the AdS2 branes on the H+
3 side, the FZZT

branes on the Liouville side.

The relation between bulk correlators on the sphere can be decomposed into relations

between bulk conformal blocks on the one hand, and bulk three-point structure constants

on the other hand [12]. The introduction of a worldsheet boundary implies a modification

of the conformal blocks, and the introduction of extra structure constants, namely the

one-point functions (which must vanish when no boundary is there to break the worldsheet

translation invariance).

Let me briefly recall that Liouville theory is a two-dimensional conformal field theory

on a worldsheet parametrized by a complex number z. The theory may be defined in terms

of a field φ(z) by the action:

SLiouville =

∫
d2z

(
|∂zφ|2 + µLe2bφ

)
. (2.1)

The H+
3 model describes strings in a three-dimensional space and therefore requires three

fields φ, γ, γ̄:

SH+
3 = k

∫
d2z

(
|∂zφ|2 + e2φ∂γ∂̄γ̄

)
. (2.2)

A more complete review with relevant references can be found in [5].

2.1 Comparison of one-point functions

Consider one-point functions of the closed string worldsheet fields Vα(z) in Liouville the-

ory and Φj(x|z) in the H+
3 model. From the bulk H+

3 -Liouville relation, the Liouville

momentum α and the H+
3 spin j are related by:

α = b(j + 1) +
1

2b
, (2.3)
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where the Liouville parameter b is related to the H+
3 model level k by b2 = 1

k−2 . In terms

of j, the one-point function for the Liouville FZZT brane parametrized by the real number

s is [8, 9]

〈
Vα=b(j+1)+ 1

2b
(z)

〉

s
=

ΨFZZT
s

|z − z̄|2∆α
,

ΨFZZT
s = (πµLγ(b2))−j− 1

2
1

π2
1
4 b

Γ(2j + 1)Γ(1 + b2(2j + 1)) cosh 2πbs(2j + 1), (2.4)

where z is the complex worldsheet coordinate and µL the Liouville interaction strength.

The one-point function for an AdS2 brane in H+
3 with real parameter r is: [7, 13]

ΨAdS2
r (x) = ν

j+ 1
2

b (8b2)−
1
4 |x + x̄|2jΓ(1 + b2(2j + 1))e−r(2j+1)sgn(x+x̄), (2.5)

where νb = πΓ(1−b2)
Γ(1+b2) so that Φj=0 is the identity field (in slight contrast to [7]), and x is a

complex isospin variable which labels states within a continuous SL(2, C) representation

of spin j.

This one-point function of the x-basis fields is written here for later use, but is not

clearly related to the one-point function in Liouville theory. Instead, the bulk H+
3 -Liouville

relation suggests to consider the µ-basis fields

Φj(µ|z) = |µ|2j+2

∫

C

d2x eµx−µ̄x̄Φj(x|z), (2.6)

whose one-point functions are obtained from eq. (2.5) after a straightforward calculation:

〈
Φj(µ|z)

〉
r

=
ΨAdS2

r

|z − z̄|2∆j
,

ΨAdS2
r = |µ|δ(<µ)ν

j+ 1
2

b π(8b2)−
1
4 Γ(2j + 1)Γ(1 + b2(2j + 1)) cosh(2j + 1)(r − i

π

2
sgn=µ).

(2.7)

It is now obvious that the AdS2 D-brane one-point function is essentially the same as that

of an FZZT brane (2.4), but depending on sgn=µ two different boundary parameters may

appear:

s± =
r

2πb
± i

4b
. (2.8)

Such a relation could have been expected on several grounds. First, the FZZT branes

are invariant under s → −s whereas the AdS2 branes are not invariant under r → −r,

so there cannot be a one-to-one relation between the parameters r and s. Second, the

SL(2, R) symmetry of the AdS2 brane, which acts on the x parameter, does not completely

determine the x dependence of the one-point function, but allows an arbitrary dependence

on sgn(x+x̄) [7]. Therefore the one-point function for an AdS2 brane involves two structure

constants (instead of one in Liouville theory), which in the µ basis are encoded in the

sgn=µ dependence. Third, the difference s+ − s− = i
2b

is the jump in Liouville boundary

condition induced by a boundary degenerate field B− 1
2b

. This is not surprising in view of

the appearance of such degenerate fields in the H+
3 -Liouville relation beyond the one-point

function discussed below.
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2.2 Comparison of conformal blocks

The H+
3 bulk conformal blocks are controlled by the Knizhnik–Zamolodchikov equations

[14], which are enough to determine their relation with Liouville conformal blocks [12]. Let

me determine the KZ equations satisfied by the conformal blocks involved in the correlator

of n bulk fields in the presence of an AdS2 brane
〈
Φj1(µ1|z1) · · ·Φjn(µn|zn)

〉
r
. In Wess–

Zumino–Witten models with symmetry-preserving boundary conditions, such KZ equations

are identical to the KZ equations satisfied by a correlator of 2n bulk fields on the sphere

(at points z1, · · · zn, z̄1 · · · z̄n), modulo a twist of the currents acting on the reflected fields

if the gluing conditions are non-trivial. In the case of AdS2 branes, the gluing conditions

are trivial as I will now show.

Let me call Ja(z), J̄a(z̄) the left- and right-moving currents of the H+
3 model [15].

Their modes generate an ŝ`2(C) × ŝ`2(C) affine Lie algebra. Their zero modes act on the

fields Φj(x|z) or Φj(µ|z) as differential operators with respect to the isospin variables x or

µ:

J−
0 = ∂

∂x
= µ ,

J0
0 = x ∂

∂x
− j = −µ ∂

∂µ
,

J+
0 = x2 ∂

∂x
− 2jx = µ ∂2

∂µ2 − j(j+1)
µ

,

(2.9)

and the currents J̄a
0 are defined by repacing x, µ with x̄, µ̄. Note that this definition of the

J̄a
0 currents is incompatible with the change of basis (2.6) and is therefore basis-dependent.

As a result, the gluing conditions will also be basis-dependent.

The µ-basis one-point function of the AdS2 brane satisfies (Ja
0 + J̄a

0 )ΨAdS2
r (µ) = 0,

which corresponds to the trivial gluing condition J = J̄ (see for instance [16]). Thus, it

satisfies the same KZ equations as the bulk two-point function
〈
Φj(µ|z)Φj(µ̄|z̄)

〉
. Indeed,

the µ-dependences are similar: |µ|2δ(2)(µ+ µ̄) for the bulk two-point function, µδ(µ+ µ̄) for

the one-point function. In contrast, the x-basis one-point function has an |x + x̄|2j factor

which contrasts with the bulk two-point function |x − x̄|4j . This reflects the fact that the

gluing conditions are non-trivial in the x-basis.

Since the correlator
〈
Φj1(µ1|z1) · · ·Φjn(µn|zn)

〉
r

satisfies the same KZ equations as

a bulk correlator with 2n fields, these equations are equivalent to BPZ equations via

Sklyanin’s separation of variables, as explained in [5, 17]. This leads to the following

relation between H+
3 and Liouville correlators in the presence of worldsheet boundaries,

where the equality so far means “satisfies the same differential equations as”:

〈
n∏

`=1

Φj`(µ`|z`)

〉

r

= π2

√
b

2
(−1)n |Pn

i=1<(µizi)| δ (<(
Pn

i=1µi))

× |Θ2n|
k−2
2

〈
n∏

`=1

Vα`
(z`)

n−1∏

a=1

V− 1
2b

(ya)

〉

s= r
2πb

− i
4b

sgn
Pn

i=1 =µi

, (2.10)

In this equation the following conventions are used: the momenta and spins are related as

– 5 –
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in eq. (2.3), I assume µL = b2

π2 , the function Θ2n is defined by

Θ2n =

∏
`<`′≤n |z``′ |2

∏
`,`′≤n(z` − z̄`′)

∏
a<a′≤n−1 |yaa′ |2

∏
a,a′≤n−1(ya − ȳa′)

∏n
`=1

∏n−1
a=1 |z` − ya|2|z` − ȳa|2

, (2.11)

and most importantly the ya are the roots with positive imaginary parts of the real poly-

nomial P (t) defined by:

n∑

`=1

(
µ`

t − z`
+

µ̄`

t − z̄`

)
=

[
n∑

`=1

(µ`z` + µ̄`z̄`)

]
P (t)∏n

`=1(t − z`)(t − z̄`)
. (2.12)

In the case n = 3, the equation (2.10) can be represented as:

+
z1

+
z2

+
z3

r

H+
3 model

+
z̄1

+
z̄2

+
z̄3

∝

+
z1

+
z2

+
z3�

y1

�
y2

s= r
2πb

± i
4b

Liouville theory

+
z̄1

+
z̄2

+
z̄3

�
ȳ1 �̄y2

(2.13)

The reflected fields at (z̄1 · · · z̄n) in the lower half-plane are not physical, but they are

indicated in this picture because they appear in the KZ or BPZ equations satisfied by the

physical correlators of eq. (2.10).

In this subsection I only argued that both sides of equation (2.10) satisfy identical

systems of differential equations. This amounts to a relation between the conformal blocks

from which the correlators are built. In the next subsection I will complete the argument

for equation (2.10) and show that it holds in a certain regime.

2.3 The bulk regime

From the explicit expressions for the one-point functions (2.4), (2.7) it is easy to check

that the equation (2.10) holds in the case n = 1, which does not involve any insertion

of degenerate Liouville fields V− 1
2b

. One could then think that it is possible to prove

equation (2.10) by a recursion on n, using the bulk operator product expansion to reduce

the case of the n-point function in the limit z1 → z2 to the case of the n−1-point function.

(The bulk OPEs in the H+
3 model and Liouville theory are indeed related in a way which

would suit such an argument [5].) Then one would rely on the KZ equation to extend the

relation (2.10) to all values of zi, away from the limit z1 → z2.

However, this argument does not work because the conformal blocks which solve the KZ

equations have singularities. These singularities are most easily seen in the corresponding

Liouville theory conformal blocks: they occur whenever one of the ya becomes real. Indeed

the ya are defined as the roots of the real polynomial P (t) (2.12). Such a polynomial can

have real roots and pairs of complex conjugate roots. Let me call the bulk regime the range

of values of µ`, z` such that all the roots of P (t) are complex. The repeated use of the bulk

OPE z1 → z2 → · · · zn (as required by the recursion above) is possible only in the bulk

regime, because the definition of P (t) (2.12) implies that for z1 → z2 some root y1 of P (t)

will also move close to z1, and therefore in the bulk. Thus, the equation (2.10) holds only

– 6 –
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in the bulk regime. Unfortunately, this prevents the easy determination of an H+
3 -Liouville

relation in other bases like the x basis, which would involve an integration over all values

of µ`.

Let me illustrate the singularities of the conformal blocks in the case of a two-point

function
〈
Φj1(µ1|z1)Φ

j2(µ2|z2)
〉
r
. In this case the polynomial P (t) has degree two and its

roots are complex provided

z ≡
∣∣∣∣
z1 − z̄2

z1 − z2

∣∣∣∣ >
|µ1| + |µ2|
|µ1 + µ2|

. (2.14)

The cross-ratio z varies from 1 when the two H+
3 bulk fields are far apart or close to the

boundary, to +∞ when they are close together or far from the boundary. The corresponding

Liouville configurations are:

+
z1

+
z2�y1�y2

Boundary regime

+
z̄1

+
z̄2

+
z1

+
z2

�

Singularity

+
z̄1

+
z̄2

+
z1

+
z2
�

y

Bulk regime

+z̄1 +z̄2

�

ȳ

|µ1|+|µ2|
|µ1+µ2|

1 +∞
z =

∣∣∣z1−z̄2
z1−z2

∣∣∣| |

(2.15)

In the boundary regime, the relation between the KZ and BPZ equations still holds. How-

ever it is not clear that a relation between H+
3 and Liouville correlators can be found. Such

a relation would have to specify which boundary parameters appear in Liouville theory.

The boundary degenerate fields induce jumps of the boundary parameter s by the quantity
i
2b

[8]. The fact that the two boundary parameters s± (2.8) differ by this quantity is very

suggestive, but more work needs to be done. This issue is however not relevant to the

present article, whose purpose is to find new discrete D-branes in the H+
3 model.

3. More branes in the Euclidean AdS3

In this section I will show that the relation between Liouville FZZT branes and AdS2

branes in the H+
3 model suggests a natural ansatz for new discrete D-branes in the H+

3

model, which will be related to the discrete ZZ-branes in Liouville theory. This ansatz will

then be subjected to a number of tests.

Let me first briefly review the ZZ branes and their relation to the continuous FZZT

branes. The ZZ branes are parametrized by two strictly positive integers (m,n) and are

described by the one-point functions [6]

〈
Vα=b(j+1)+ 1

2b
(z)

〉

(m,n)
=

ΨZZ
(m,n)

|z − z̄|2∆α
,

ΨZZ
(m,n) = (πµLγ(b2))−j− 1

2
2

3
4

πb
Γ(2j + 1)Γ(1 + b2(2j + 1)) sin πm(2j + 1) sin πnb2(2j + 1) .

(3.1)

– 7 –
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A well-known property of these ZZ branes which will be most useful in the following is:

ΨZZ
(m,n) = ΨFZZT

i
2
(mb−1+nb)

− ΨFZZT
i
2
(mb−1−nb)

. (3.2)

3.1 An ansatz for new discrete D-branes

The previous section demonstrated that an AdS2 brane with boundary parameter r is

related to FZZT branes with boundary parameters s = r
2πb

− i
4b

sgn=µ. It is natural to

look for discrete branes in the H+
3 model which would preserve the same symmetries as

the AdS2 branes (in other words, they would obey the same gluing conditions) and which

would be related in a similar manner to ZZ branes with parameters depending on sgn=µ.

In addition, I have explained that the difference of the two possible boundary parameters

has an interpretation as the jump induced by a boundary degenerate field, which is quite

natural considering the appearance of such fields in the boundary regime (2.15). Through

the relation between ZZ and FZZT branes eq. (3.2), this jump corresponds to a jump

m → m − 1 of the parameter m of the ZZ branes. This suggests the following relation:

New discrete brane in H+
3 Liouville ZZ branes

(m,n) strictly positive integers

{
(m − 1, n) if sgn=µ > 0

(m,n) if sgn=µ < 0

(3.3)

I will call “discrete AdS2 branes” or “AdSd
2 branes” these new branes. Their above def-

inition in terms of ZZ branes can be translated into a relation with AdS2 branes via the

ZZ-FZZT relation eq. (3.2) and the AdS2-FZZT relation of the previous section:

Ψ
AdSd

2

(m,n) = ΨAdS2

iπ(m− 1
2
+nb2)

− ΨAdS2

iπ(m− 1
2
−nb2)

. (3.4)

The essential feature of this relation is the shift −1
2 , which directly corresponds to the shift

of the boundary parameters in the AdS2-FZZT relation eq. (2.8). Let me write explicitly

the one-point function of the AdSd
2 branes in the x basis:

Ψ
AdSd

2

(m,n)(x) = ν
j+ 1

2
b (8b2)−

1
4 |x + x̄|2jΓ(1 + b2(2j + 1))

× 2isgn(x + x̄) e−iπ(m− 1
2
)(2j+1)sgn(x+x̄) sin πb2n(2j + 1) . (3.5)

Naturally, the relation (3.4) provides a simple way to derive the one-point functions of the

AdSd
2 branes in any basis. I have used the x basis because the shift equation of the next

subsection is formulated in this basis.

3.2 Verification of the shift equation

The one-point function for an AdS2 brane was found in [7] by solving a shift equation

indicating how it should behave under shifts j → j ± 1
2 . A modified version of the shift

equation is expected to hold for discrete branes preserving the same symmetries. This

expectation is based on the study of shift equations for ZZ and FZZT branes in Liouville

theory [8, 6] which I now review.

– 8 –
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The shift equations for ZZ and FZZT branes are of the type:

Ra
sΨ

a
s(α) = F−Ψa

s(α − b

2
) + F+Ψa

s(α +
b

2
) , (3.6)

where the index a means ZZ or FZZT, with brane parameters generically called s. The

coefficients F± on the right-hand side do not depend on the type or parameter of the D-

brane because they are fusing matrix elements. However, the quantity Ra
s depends on the

type of brane: 1

RFZZT
s = RFZZT(− b

2
, Q|s) = −2π

√
µL

sinπb2

Γ(−1 − 2b2)

Γ(−b2)2
cosh 2πbs , (3.7)

RZZ
(m,n) =

ΨZZ
(m,n)(α = − b

2)

ΨZZ
(m,n)(α = 0)

, (3.8)

where the bulk-boundary structure constant value RFZZT(− b
2 , Q|s) was derived in [8] by

a free field computation and can also be deduced from the general formula for the bulk-

boundary structure constant [18] by carefully taking the relevant limit as sketched in [19].

One may wonder how the shift equations (3.6), where the factor Ra
s depends on the type

of brane (a ∈ {ZZ,FZZT}), can be compatible with the linear relation (3.2) between ZZ

and FZZT branes. The compatibility actually requires the non-trivial relation RZZ
(m,n) =

RFZZT

s=i mb−1+nb
2

= RFZZT

s=i mb−1
−nb

2

. A direct computation shows that this relation is indeed

obeyed:

ΨZZ
(m,n)(− b

2)

ΨZZ
(m,n)(0)

= RFZZT

i mb−1+nb
2

= RFZZT

i mb−1
−nb

2

= −2π

√
µL

sin πb2

Γ(−1 − 2b2)

Γ(−b2)2
(−1)m cos πnb2.(3.9)

This analysis of the Liouville branes’ shift equations can be generalized to H+
3 branes’

shift equations. The continuous AdS2 branes are indeed known to satisfy an equation of

the type [7]

RAdS2
r ΨAdS2

r (j) = F
H+

3
− ΨAdS2

r (j − 1

2
) + F

H+
3

+ ΨAdS2
r (j +

1

2
). (3.10)

In the notations of [7], the quantity RAdS2
r can be computed explicitly as RAdS2

r = (x +

x̄)B(1
2 )A(1

2 , 0|r) (see in particular the equation (3.28) therein) 2.

Now the shift equation for discrete branes in H+
3 should be identical to that for con-

tinuous branes, except for the replacement of RAdS2
r with

R
AdSd

2

(m,n) =
Ψ

AdSd
2

(m,n)(j = 1
2)

Ψ
AdSd

2

(m,n)(j = 0)
. (3.11)

1In the article [6] the denominator ΨZZ(α = 0) is absent from RZZ
(m,n) because the one-point function is

normalized so that ΨZZ(α = 0) = 1.
2Note that νb = π

Γ(1−b2)

Γ(1+b2)
now has an extra factor π wrt [7] so that Φj=0 is the identity field, see eq. (2.5)

of the present article and footnote 7 of [7]. Also note that the requirement B(j = 0) = 1 leads to a different

sign for B(j) as compared to [7].
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Does the ansatz (3.4) satisfy the resulting shift equation? Like in Liouville theory, the shift

equation for discrete branes boils down to the equations

R
AdSd

2

(m,n)

!
= RAdS2

r=iπ(m− 1
2
+nb2)

!
= RAdS2

r=iπ(m− 1
2
−nb2)

. (3.12)

These equations can now be checked by direct calculation, and the three quantities to be

compared are indeed all equal to

2i|x + x̄|sgn(x + x̄)
√

νb
Γ(1 + 2b2)

Γ(1 + b2)
(−1)m cos πnb2 . (3.13)

3.3 Checks and interpretations à la Cardy

3.3.1 D-branes and representation theory

Let me discuss how the proposed discrete AdS2 branes help to complete the list of D-branes

in the Euclidean AdS3. Cardy has shown that in rational two-dimensional conformal

field theories, symmetry-preserving D-branes are naturally associated to representations

of the relevant symmetry algebra [20]. This idea can be extended to Liouville theory.

To start with, the continuous FZZT branes are naturally associated to the continuous

representations of the Virasora algebra, which appear in the physical Liouville spectrum

and have momenta α ∈ Q
2 + iR (with Q = b + b−1). In order to account for the ZZ branes

in terms of representation theory, one has to go beyond the physical spectrum and take

into account the degenerate representations appearing in the Kac table, with momenta

2αmn − Q = mb−1 + nb , (3.14)

where (m,n) are still strictly positive integers, and I ignore the reflected degenerate repre-

sentations 2αmn − Q = −(mb−1 + nb) because the reflection symmetry of Liouville theory

makes them redundant. Now, the relation (2.3) between the Liouville momentum and the

H+
3 spin relates the Virasoro degenerate representations to ŝ`2 degenerate representations

with spins

2jmn + 1 = mb−2 + n . (3.15)

The discrete AdS2 branes should be considered as associated with such representations,

whereas the ordinary AdS2 branes would be associated with the physical continuous rep-

resentations j ∈ −1
2 + iR. This interpretation of the AdS2 branes was already considered

in [7] (section 4.2), which suggested the following relation between representation spins j

and brane parameters r:

j(r) = −1

2
− 1

4b2
+ i

r

2πb2
. (3.16)

However, as observed in [7], this relation does not give physical values j ∈ −1
2 + iR for

r real due to the term − 1
4b2

. But this term precisely corresponds to the shift in the

AdS2-FZZT relation (2.8), and now seems rather natural. The reflection symmetry of the

spectrum j → −j−1 then corresponds to the invariance of the FZZT branes under s → −s.
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Now replacing r in eq. (3.16) with the values appropriate for discrete AdS2 branes (3.4)

gives the spins of the ŝ`2 degenerate representations with null vector at nonzero level:

2j(r = iπ[m − 1
2 + nb2]) + 1 = −(mb−2 + n).

There is another series of degenerate representations of ŝ`2 with m = 0, which do

not correspond to Virasoro degenerate representations because they have a null vector at

level zero [21]. D-branes corresponding to these representations are therefore not expected

to be simply related to Liouville theory objects. There exist natural candidates for such

D-branes: the S2 branes with imaginary radius of [7]. In contrast to the AdS2 branes

which preserve an SL(2, R) symmetry out of the SL(2, C) of the H+
3 model, the S2 branes

preserve an SU(2) symmetry. The degenerate representations with level zero null vectors

are unitary as SU(2) representations, and they indeed appear in the physical spectrum of

the S2 branes.

The representations mentioned so far are summarized in the following table, which

should be compared to the picture of the moduli spaces of D-branes in H+
3 and Liouville

theory in the Introduction:

Virasoro ŝ`2

α ∈ Q
2 + iR

2αmn − Q = mb−1 + nb

j ∈ −1
2 + iR

2jmn + 1 = mb−2 + n

2jn + 1 = n

3.3.2 Computation of the annulus amplitudes

In the context of rational conformal field theories, Cardy has shown that the consistency of

the spectrum of open strings on a D-brane (i.e. the requirement that it consists of finitely

many representations with positive integer multiplicities) leads to a strong constraint on

the one-point function of that D-brane [20]. In non rational conformal field theories, the

spectrum of open strings should consist of continous states with a positive density and/or

discrete states with positive integer multiplicities. The consistency of the AdS2 branes has

already been checked in this way in [7, 22]. The study of this type of consistency conditions

is sometimes called the modular bootstrap approach [23].

The open-string spectrum is related to the one-point function via the annulus ampli-

tude Z
AdSd

2

(m1,n1)(m2,n2)
= Trq̃L0−

c
24 where the powers of q̃ are the energies of the open-string

states 3. Like the annulus amplitude for AdS2 branes, the annulus amplitude for open

strings stretched between two AdSd
2 branes is most easily computed in the µ basis. (A

naive x-basis computation would give a wrong result due to an improper treatment of the

3With standard conventions: q̃ = exp− 2πi
τ

and q = exp 2πiτ where τ is the modular parameter of the

annulus
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divergences [7].)

Z
AdSd

2

(m1,n1)(m2,n2)
=

∫

− 1
2
+iR

dj

∫

C

d2µ

|µ|2 Ψ
AdSd

2

(m1,n1)

(
Ψ

AdSd
2

(m2,n2)

)∗ q−
b2

4
(2j+1)2

∏∞
`=1(1 − q`)3

(3.17)

= δ(0)

∫ ∞

0
1 ×

∑

n∈n1×n2




∑

m∈m1×m2

+
∑

m∈(m1−1)×(m2−1)



χmn(q̃) .(3.18)

In this formula, m ∈ m1×m2 means |m1−m2| < m < m1+m2 while m1+m2−m is an odd

integer (like in sin m1x sin m2x
sin x

=
∑

m∈m1×m2
sin mx), and χmn(q) = η−3(q)(q−

1
4
(mb−1+nb)2 −

q−
1
4
(mb−1−nb)2) is an ŝ`2 degenerate character [21]. The infinite prefactors (which come

from the integral
∫

C
d2µ) result from the SL(2, R) symmetry of the AdSd

2 branes and are

similar to infinite prefactors appearing in the annulus amplitude of AdS2 branes [7]. In the

case of AdS2 branes, there was an extra divergence of the integral
∫

dj at j = −1
2 . This

zero radial momentum divergence reflected the infinite extension of the AdS2 branes in the

radial direction and is absent in the case of the AdSd
2 branes.

Therefore, the spectrum of open strings on the AdSd
2 branes is consistent. The spec-

trum of open strings between AdS2 and AdSd
2 branes is also made of discrete states with

integer multiplicities, but these states can have imaginary conformal dimensions, as is clear

from the formula:

Z
AdS2−AdSd

2

r,(m,n) ∝
∫

dj
q−

b2

4
(2j+1)2

∏∞
`=1(1 − q`)3

sinπnb2(2j + 1)

sin πb2(2j + 1)

×
[
sin π(m − 1)(2j + 1)

sin π(2j + 1)
cosh(r − i

π

2
)(2j + 1) +

sin πm(2j + 1)

sin π(2j + 1)
cosh(r + i

π

2
)(2j + 1)

]
.

(3.19)

The Gaussian integral on j will indeed yield powers of q̃ which are not real. In such cases

I will say that Z
AdS2−AdSd

2

r 6=0,(m,n) has an imaginary spectrum pathology. Note however that this

pathology is not an inconsistency of the conformal field theory with boundary conditions

defined by AdSd
2 branes. The pathology only prevents the AdSd

2 branes to be interpreted

as physical string theory objects in the presence of AdS2 branes.

Actually, the ZZ branes with (m,n) 6= (1, 1) in Liouville also have this imaginary

spectrum pathology, which does not prevent them from playing an important rôle in the

theory. Note also that the pathology can be absent in the case of some branes constructed

from the AdSd
2 branes as I will argue in the context of the 2d black hole SL(2, R)/U(1).

4. More branes in the 2d black hole

D-branes in the 2d “cigar” Euclidean black hole SL(2, R)/U(1) can be obtained from D-

branes in the Euclidean AdS3 by a descent procedure [10]. On the one hand this will yield

more consistency checks for the new D-branes constructed in the present article, and on

the other hand this will suggest a comparison with matrix model results.

– 12 –
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4.1 Known branes and new branes in the 2d black hole

Let me now recall the one-point functions of the SL(2, R)/U(1) bulk fields Φj
n′,w in the

presence of boundary conditions defined by the D-branes descending from S2 and AdS2

branes in H+
3 .

A D0-brane in the cigar descends from an S2 branes in H+
3 labelled by a strictly

positive integer n:

ΨD0
n = δn′0ν

j+ 1
2

b

k
1
4 b−

1
2

2π(−1)nw+1

Γ(kw
2 − j)Γ(−kw

2 − j)

Γ(−2j)
Γ(1 + b2(2j + 1)) sin πnb2(2j + 1) .(4.1)

A D1-brane in the cigar descends from an AdS2 brane in H+
3 with a real parameter r and

an angle θ0:

ΨD1
r = δw,0e

in′θ0ν
j+ 1

2
b

k− 1
4 b−

1
2

2

Γ(2j + 1)Γ(1 + b2(2j + 1))

Γ(1 + j + n′

2 )Γ(1 + j − n′

2 )

(
e−r(2j+1) + (−1)n

′

er(2j+1)
)

.(4.2)

A D2-brane in the cigar also descends from an AdS2 brane in H+
3 , whose parameter r now

has to be taken pure imaginary r = iσ. The real parameter σ of the D2-branes is quantized

in units of 2πb2 and bounded |σ| < π
2 (1 + b2).

ΨD2
σ = δn′,0ν

j+ 1
2

b

k
1
4 b−

1
2

2π
Γ(2j + 1)Γ(1 + b2(2j + 1))

×
(

Γ(−j + kw
2 )

Γ(j + 1 + kw
2 )

eiσ(2j+1) +
Γ(−j − kw

2 )

Γ(j + 1 − kw
2 )

e−iσ(2j+1)

)
. (4.3)

New discrete branes can be obtained in SL(2, R)/U(1) from the discrete AdS2 branes

in H+
3 . Like the original AdS2 branes, the discrete AdS2 branes give rise to two families of

D-branes in the coset. Their one-point functions can be obtained from D1- and D2-branes’

one-point functions thanks to the formula (3.4). Let me first consider the D1d-branes

obtained from the D1-branes:

ΨD1d

(m,n) = δw,0e
in′(θ0+ π

2
)ν

j+ 1
2

b 2k− 1
4 b−

1
2
Γ(2j + 1)Γ(1 + b2(2j + 1))

Γ(j + 1 + n′

2 )Γ(j + 1 − n′

2 )

× sin π

[
(2j + 1)(m − 1

2
) +

n′

2

]
sin πnb2(2j + 1) . (4.4)

The spectrum encoded in the annulus amplitude ZD1d

(m1,n1)(m2,n2)
contains a finite number

of discrete representations with positive integer multiplicities and is therefore consistent.

(However, I did not find the marginal field which might have been expected from the

existence of a modulus θ0.) Note also that the amplitude ZD1−D1d

r 6=0,(m,n) suffers from the same

imaginary spectrum pathology as the amplitude Z
AdS2−AdSd

2

r 6=0,(m,n) in H+
3 .
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The D2d-branes obtained from the D2-branes are characterized by the one-point func-

tion:

ΨD2d

(m,n) = δn′,0ν
j+ 1

2
b i

k
1
4 b−

1
2

π
Γ(2j + 1)Γ(1 + b2(2j + 1)) sin πnb2(2j + 1)

×
(

Γ(−j + kw
2 )

Γ(j + 1 + kw
2 )

eiπ(m− 1
2
)(2j+1) − Γ(−j − kw

2 )

Γ(j + 1 − kw
2 )

e−iπ(m− 1
2
)(2j+1)

)
. (4.5)

The spectrum encoded in the annulus amplitude ZD2d

(m1,n1)(m2,n2)
contains a finite number

of discrete representations with positive integer multiplicities and is therefore consistent. 4

The spectrum ZD2−D2d

σ,(m,n) is also consistent and free from the imaginary spectrum pathol-

ogy, because the D2-brane parameter σ comes from pure imaginary values of the AdS2 brane

parameter r. However, it might be more relevant to examine the amplitude ZD1−D2d

r,(m,n) , which

is more difficult to compute because of the difference in gluing conditions between D1- and

D2d-branes. This difficulty is no obstacle to finding that ZD1−D2d

6=0,(m,n) has the imaginary spec-

trum pathology 5 except if (m,n) = (1, 1), like the amplitude ZFZZT−ZZ
s,(m,n) in Liouville

theory. Notice that ZD1−D0
r 6=0,n is also free from the imaginary spectrum pathology only for

n = 1. The D0- and D2d-branes with parameters n and (1, n) respectively behave identi-

cally in this respect because their overlaps with D1-branes only involve closed strings with

winding zero, which make no difference between them: ΨDO
n (w = 0) = ΨD2d

(1,n)(w = 0).

4.2 Geometric and non-geometric D-branes

Let me discuss whether the new D1d- and D2d-branes have a geometric interpretation. A

geometric description of the 2d black hole is possible in the limit k → ∞ which corresponds

to small string length `s =
√

α′ (while
√

kα′ is a fixed length). First recall the geometric

interpretation of the known D0-, D1- and D2-branes [10] as zero-, one- and two-dimensional

geometric objects in the 2d black hole. This can be seen in the large k behaviour of the

one-point functions,

ΨD0
n ∼ k− 1

2 , ΨD1
(r,θ0)

∼ 1 , ΨD2
σ ∼ k

1
2 . (4.6)

How this behaviour depends on the dimensionality of the D-branes is indeed consistent

with the dependence of the D-branes’ tensions T ∝ (α′)−
p

2 with respect to the D-branes’

dimensions p.

Now the observation (from the previous subsection) that closed strings with zero wind-

ing couple identically to D0-branes and to D2d-branes implies that the D2d-branes should

be interpreted as pointlike branes at the tip of the cigar like the D0-branes. The behaviour

4The detailed computation of this spectrum for m1 6= m2 would require a non-trivial generalization of

the calculations in [10]. Note also that the multiplicities are positive in contrast to the D2-brane case [24],

due to the sign difference between the second lines of eqs (4.3) and (4.5).
5The imaginary spectrum pathology is absent from such a discrete annulus amplitude if and only if

ΨD1
r

“

ΨD2d

(m,n)

”

∗

is a linear combination of a finite number of terms of the type cos λ(2j + 1) with λ either

real or pure imaginary. The pathology results from such terms with a generic complex λ.
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of D1d-branes is different:

ΨD1d

(m,n) ∼ k−1 , (4.7)

thus their one-point functions decrease too fast at large k to allow a geometric interpre-

tation. It is possible to call the D1d-branes “anisotropic localized branes at the tip of the

cigar” only in a heuristic sense.

Let me nevertheless compare this heuristic geometric picture to the situation in Liou-

ville theory. The localization of the D1d-branes at the tip of the cigar, and the existence

of continuous D1-branes extending from infinity up to some finite distance from the tip

(a distance determined by their parameter r), are similar to the localization of the ZZ

branes at strong Liouville coupling, together with the existence of FZZT branes extending

to infinity. The situation of the D2d- and D2-branes is quite different since the D2-branes

extend to the tip where the D2d-branes are located. However, a species of branes with

the same gluing conditions as the D2-branes and a behaviour similar to that of the FZZT

branes has been predicted to exist [25, 26]: the D-branes descending from dS2 branes in

AdS3 [27], which I will also call dS2 branes:

|

�

�

D1d
D1

D2d dS2

ZZ
FZZT

The geometry of the dS2 branes in AdS3 suggests that the dS2 branes in the cigar are

parametrized by a real number r′ related to the D2-brane’s parameter σ by σ = π
2 + ir′.

The identifications σ = ir and r = 2πbs − iπ
2 (from eq. (2.8)) then imply the relation

r′ = 2πbs between the dS2 brane parameter r′ and the FZZT brane parameter s. In

addition, the dS2 brane is expected to be invariant under r′ → −r′ like the FZZT brane

under s → −s. This supports the idea of a close relationship between dS2 branes in the

cigar and FZZT branes in Liouville theory.

4.3 A shift equation from N = 2 Liouville theory

Let me now compare the D-branes in the 2d black hole with D-branes in the N = 2

supersymmetric Liouville theory. The N = 2 Liouville theory is indeed equivalent to

the N = 2 supersymmetric 2d black hole theory [28], which is itself very similar to the

bosonic 2d black hole theory which has been considered in this section. (On the other

hand, the N = 2 Liouville theory is considerably more complicated than bosonic Liouville

theory.) The comparison of D-branes is relevant to this article because it will provide an

independent shift equation for the one-point functions of the new D1d-branes. This is based

– 15 –



J
H
E
P
0
8
(
2
0
0
6
)
0
1
5

on the article on N = 2 Liouville theory by Hosomichi [11], which among many interesting

results formulates a shift equation with j-shift by k
2 in addition to the shift equation with

j-shift by 1
2 considered in subsection 3.2. These two possible shifts are independent if k is

not rational. However, in contrast to the two elementary α-shifts in Liouville theory (by
1
2b

and b
2) which are related by a simple selfduality of the theory, the two shifts in N=2

Liouville theory must be analyzed independently.

The D1-branes in the 2d black hole (4.2) correspond to Hosomichi’s B-branes, [11]

(4.55). According to the principles of subsection 3.2, the D1d-branes should therefore

satisfy

ΨD1d

(m,n)(j = −k
2 , n′)

ΨD1d

(m,n)(j = 0, n′ = 0)

!
= cltl(

n′

2
,−n′

2
)

∣∣∣∣
r=iπ(m− 1

2
±nb2)

, (4.8)

where cltl is explicitly known [11] (4.55), and the N = 2 Liouville degenerate spin k
2

becomes −k
2 in SL(2, R)/U(1) after k → k− 2 and reflection. If proper care is taken of the

other differences of conventions, this equation is found to hold.

The D2-branes in the 2d black hole (4.3) correspond to Hosomichi’s chiral or anti-chiral

A-branes, [11] (3.26). The k
2 -shift equation for these branes [11] (4.33) has a vanishing left-

hand side, leading to the condition:

ΨD2d

(m,n)(j = −k
2 , w)

ΨD2d

(m,n)(j = 0, w = 0)

!
= 0. (4.9)

Surprisingly, this equation holds due to the denominator being infinite. It therefore provides

a rather trivial check of the discrete D2-branes’s one-point function ΨD2d

(m,n).

To summarize, translating the new AdSd
2 branes to the D1d-branes in the 2d black

hole and then to N = 2 Liouville theory has yielded a strong independent check of their

consistency.

In addition, the new AdSd
2 branes translate into two new families of discrete D-branes

in N=2 Liouville theory, associated to the continuous B-branes and chiral or anti-chiral

A-branes of [11]. Note in particular that the N=2 Liouville incarnation of the D2d-branes

differ from the already known non-chiral degenerate A-branes, [11] (3.23). These discrete

A-branes are actually associated to the continuous non-chiral non-degenerate A-branes,

[11] (3.21). Since there exist two types of continuous A-branes in N=2 Liouville theory

(chiral or anti-chiral on the one hand, non-chiral on the other hand), it is not surprising

that there exist two corresponding types of discrete A-branes.

For completeness, let me point out that the degenerate chiral A-branes, [11] (3.33) and

their special case the identity A-brane, [11] (3.18) clearly correspond to D0-branes in the

2d black hole. It would be interesting to study the completeness of D-branes in the 2d

black hole and in N=2 Liouville theory.
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